
Self-Healing of Byzantine Faults

Jeffrey Knockel, George Saad and Jared Saia
Department of Computer Science, University of New Mexico

email: {jeffk,gwagdy,saia}@cs.unm.edu.

Abstract

Recent years have seen significant interest in
designing networks that are self-healing in the
sense that they can automatically recover from
adversarial attack. Previous work shows that
it is possible for a network to automatically re-
cover, even when an adversary repeatedly deletes
nodes in the network. However, there have not
yet been any algorithms that self-heal in the case
where an adversary takes over nodes in the net-
work. In this paper, we address this gap.

In particular, we describe a communication
network over n nodes that ensures the following
properties, even when an adversary controls up
to t ≤ (1/4− ε)n nodes, for any positive ε. First,
the network provides point-to-point communica-
tion with bandwidth and latency costs that are
asymptotically optimal. Second, O(t(log∗ n)2)
message corruptions occur in expectation, before
the adversarially controlled nodes are effectively
quarantined so that they cause no more corrup-
tions. We present empirical results showing that
our approach may be practical.

“Fool me once, shame on you. Fool me twice,
shame on me.” - English proverb

1 Introduction

Self-healing algorithms protect critical proper-
ties of a network, even when that network is
under repeated attack. Such algorithms only
expend resources when it is necessary to repair
damage done by an attacker. Thus, they pro-
vide significant resource savings when compared
to traditional robust algorithms, which expend
significant resources even when the network is
not under attack.

The last several years have seen exciting re-

sults in the design of self-healing algorithms [2,
14, 7, 8, 12, 16]. Unfortunately, none of these
previous results handle Byzantine faults, where
an adversary takes over nodes in the network and
can cause them to deviate arbitrarily from the
protocol. This is a significant gap, since tradi-
tional Byzantine-resilient algorithms are notori-
ously inefficient, and the self-healing approach
could significantly improve efficiency.

In this paper, we take a step towards address-
ing this gap. For a network of n nodes, we de-
sign self-healing algorithms for communication
that tolerate up to a 1/4 fraction of Byzantine
faults. Our algorithms enable any node to send
a message to any other node in the network with
bandwidth and latency costs that are asymptot-
ically optimal.

Moreover, our algorithms limit the expected
number of message corruptions. Ideally, each
Byzantine node would cause O(1) corruptions;
our result is that each Byzantine node causes
an expected O((log∗ n)2) corruptions.1 Thus, we
must amend our initial proverb to: “Fool me
once, shame on you. Fool me ω((log∗ n)2) times,
shame on me.”

1.1 Our Model

We assume an adversary that is static in the
sense that it takes over nodes before the algo-
rithm begins. We call the nodes controlled by
the adversary bad and the remaining nodes good.
The bad nodes may arbitrarily deviate from the
protocol, by sending no messages, excessive num-
bers of messages, incorrect messages, or any com-

1Recall that log∗ n or the iterated logarithm function
is the number of times logarithm must be applied itera-
tively before the result is less than or equal to 1. It is an
extremely slowly growing function: e.g. log∗ 1010 = 5

bination of these. The good nodes follow the
protocol. We assume that the adversary knows
our protocol, but is unaware of the random bits
of the good nodes.

We further assume that each node has a
unique ID. We say that node p has a link to node
q if p knows q’s ID and can thus directly com-
municate with node q. Also, we assume the ex-
istence of a public key digital signature scheme,
and thus a computationally bounded adversary.
Finally, we assume a partially synchronous com-
munication model: any message sent from one
good node to another good node requires at most
∆ time steps to be sent and received, and the
value ∆ is known to all nodes. However, we as-
sume a rushing adversary, so the bad nodes re-
ceive all messages from good nodes in a round
before sending out their own messages.

Our algorithms make critical use of quorums
and a quorum graph. We define a quorum to
be a set of θ(log n) nodes, of which at most
a 1/4 fraction are bad. Many results show
how to create and maintain a network of quo-
rums [5, 9, 11, 17, 6, 1, 10]. All of these results
maintain what we will call a quorum graph in
which each vertex represents a quorum. The
properties of the quorum graph are: 1) Each
node is in O(log n) quorums; 2) For any quorum
Q, any node in Q can communicate directly to
any other node in Q; and 3) For any quorums Qi
and Qj that are connected in the quorum graph,
any node in Qi can communicate directly with
any node in Qj and vice versa.

Communication in the quorum graph typically
occurs as follows. When a node s sends an-
other node r some message m, there is a canon-
ical quorum path through the quorum graph,
Q1, Q2, . . . , Q`, where s ∈ Q1 and r ∈ Q`. This
path is determined by the ID’s of both s and r.
A naive way to route the message is for s to send
m to all nodes in Q1. Then for i = 1 to `−1, for
all nodes in Qi to send m to all nodes in Qi+1,
and for all nodes in Qi+1 to do majority filtering
on the messages received in order to determine
the true value of m. Unfortunately, this algo-
rithm requires O(` log2 n) messages. This paper
shows how to reduce this cost.

1.2 Our Results

This paper provides a self-healing algorithm,
SEND, that sends a message from a source node
to a target node in the network. Our main result
is summarized in the following theorem.

Theorem 1.1. Assume we have a network with
n nodes and t ≤ (1/4 − ε)n bad nodes, for any
positive ε, and a quorum graph as described
above. Then our algorithm ensures the follow-
ing.

• For any call to SEND, the expected latency
is O(`) and the expected number of mes-
sages is O(`+log n), in an amortized sense.2

• The total number of times that a mes-
sage can be corrupted in a call to SEND
is O(t(log∗ n)2) in expectation.

1.3 Related Work

Our results are inspired by recent work on self-
healing algorithms [2, 14, 7, 8, 12, 16]. A com-
mon model for these results is that the follow-
ing process repeats indefinitely: an adversary
deletes some nodes in the network, and the algo-
rithm adds edges. The algorithm is constrained
to never increase the degree of any node by more
than a logarithmic factor from its original de-
gree. In this model, researchers have presented
algorithms that ensure the following properties:
the network stays connected and the diameter
does not increase by much [2, 14, 7]; the shortest
path between any pair of nodes does not increase
by much [8]; and expansion properties of the net-
work are approximately preserved [12].

Our results are also similar in spirit to those of
Saia and Young [15] and Young et al. [19], which
both show how to reduce message complexity
when transmitting a message across a quorum
path of length `. The first result, [15], achieves
expected message complexity of O(` log n) by
use of bipartite expanders. However, this re-
sult is impractical due to high hidden constants

2In particular, if we perform any number of message
sends through quorum paths, where `M is the longest such
path, and L is the sum of the quorums traversed in all
such paths, then the expected total number of messages
sent will be O(L+ t · `M log2 n log∗ n). Note that, since t
is fixed, for large L this value is O(L).

2

and high setup costs. The second result, [19],
achieves expected message complexity of O(`).
However, this second result requires the sender
to iteratively contact a member of each quo-
rum in the quorum path. Thus, while practical
for some peer-to-peer applications, it has draw-
backs in 1) load-balancing : for example, a single
node broadcasting to all nodes through a tree
of quorums must send to θ(n) messages; and 2)
anonymity: the ID of the sender is learned by at
least one node in each quorum.

As mentioned earlier, several peer-to-peer net-
works have been described that provably enable
reliable communication, even in the face of ad-
versarial attack [5, 3, 9, 11, 17, 1]. To the best of
our knowledge, our approach applies to each of
these networks, with the exception of [3]. In par-
ticular, we can apply our algorithms to asymp-
totically improve the efficiency of the peer-to-
peer networks from [5, 9, 11, 17, 1].

1.4 Organization of Paper

The rest of this paper is organized as follows.
In Section 2, we describe our algorithms. In
Section 3, we prove the correctness of these al-
gorithms; the main result of this section is a
proof of Theorem 1.1. We give empirical results
showing how our algorithms can improve the effi-
ciency of the butterfly network of [5] in Section 4.
Finally, we conclude and describe problems for
future work in Section 5.

2 Our Algorithms

Algorithm 1 SEND(m, r)

Assumptions: Node s wants to send message
m to node r.

1. Node s calls SEND-LEADER (m, r)

2. With probability 1/(log∗ n)2, node s calls
CHECK (m, r)

In this section, we describe our algorithms
SEND, SEND-LEADER, CHECK, and UP-
DATE. The main technical challenge of our pa-
per is in the design of the algorithm CHECK,
which is described in Section 2.2.

Algorithm 2 SEND-LEADER(m, r)

Assumptions: m is the message to be sent, and
r is the destination. We let Q1, Q2, . . . Q` be the
quorum path from s to r in the quorum graph.

1. Node s sends m to every node in Q1

2. Each node in Q1 sends the message it re-
ceives to the leader q2 of quorum Q2.

3. The leader q2 checks for conflicting mes-
sages. If messages conflict, q2 aborts and
initiates a call to UPDATE .
Otherwise, for i = 2, . . . , `− 2 do

(a) The leader qi of quorum Qi sends the
message it receives to the leader qi+1

of quorum Qi+1

4. The leader q`−1 sends the message it receives
to all nodes in Q`

5. The node r checks for conflicting messages.
If messages conflict, r initiates a call to
UPDATE .

2.1 Overview

Our algorithms maintain a leader for each quo-
rum. We maintain the invariant that, for every
quorum Q, all nodes in Q know the leader of Q.
Additionally we maintain that for every quorum
Q′, such that Q′ has an edge to Q in the quorum
graph, all nodes in Q′ know the leader of Q.

As described previously, we assume that when
node s wants to send a message to a node r, there
is a canonical quorum path Q1, Q2, . . . , Q`, deter-
mined by the IDs of s and r, such that s ∈ Q1

and r ∈ Q`. Our main algorithm SEND (Al-
gorithm 1), has s call SEND-LEADER with the
message to be sent and the ID of the node r.

In the SEND-LEADER (Algorithm 2), s sends
the message to all nodes in Q1; these nodes send
to the leader of Q2; and the message is prop-
agated by quorum leaders until reaching Q`−1.
Then the leader of Q`−1 sends to all nodes in
Q`, and these nodes send directly to r.

SEND-LEADER is vulnerable to corruption.

3

Thus, with probability 1/(log∗ n)2, SEND next
calls CHECK (Algorithm 3), which has the fol-
lowing two properties: 1) with probability at
least 1/2, it determines if a message was cor-
rupted in the previous call to SEND-LEADER;
and 2) it is resource efficient, requiring only
O(`(log∗ n)2) messages.

Unfortunately, while CHECK can determine if
a corruption occurred, it does not determine the
location where the corruption occurred. Thus, if
CHECK detects a corruption, UPDATE (Algo-
rithm 4) is called. When called after a corrup-
tion occurs, UPDATE identifies two neighbor-
ing quorums Qi and Qi+1 in the path, for some
1 ≤ i < `, such that one of the leaders of the two
quorums is bad. Then, new leaders are elected
for both Qi and Qi+1.

2.2 CHECK

The algorithm CHECK is described formally as
Algorithm 3. We now give an overview. CHECK
runs for 4 log∗ n rounds, and maintains a subset
Si for each quorum Qi in the quorum path. Ini-
tially all Si are empty and s generates a pub-
lic/private key pair kp, ks.

In each round, for each quorum Qi, 1 ≤ i ≤ `,
a new node is added to Si. This new node is
chosen uniformly from all nodes in Qi. Also, in
each round, a message m′ is constructed, which
consists of 4 items: 1) the original message m
sent during SEND-LEADER; 2) the public key
kp generated by s at the start of the call to
CHECK; 3) the ID of the receiver node, r; and
4) an array of random numbers, R, that are used
to pick the nodes added to all the Si sets in the
current round. The message m′ is signed using
the private key ks.

The node s sends m′ to all nodes in S1; then
for all 1 ≤ i ≤ `, all nodes in Si send to the
new node in Si+1 and this new node sends to all
nodes in Si+1. Finally, all nodes in S` send to
the node r.

If a node has previously received the public
key, kp, then it verifies each subsequent message
with it. A node initiates a call to UPDATE if it
receives inconsistent messages or fails to receive
and verify some expected message.

An example run of CHECK is illustrated in

G B G B B B B B B B B B B B G B G B

B G G G B G B G B B B G B B B G G G

Received m' Didn't receive m'

G B G G G B B B B G B B G G B B G B

B G B B B G G G B G G G B B G G B G

Figure 1: Example run of CHECK

Figure 1. In this figure, there is a column for
each quorum in the quorum path and a row for
each round of CHECK. For a given row and col-
umn, there is a G or B in that position depending
on whether the node selected in that particular
round and that particular quorum is good(G) or
bad(B). The left bar in each row specifies the
rightmost quorum in which there is some good
node that knows m′. The right bar in each row
specifies the leftmost quorum in which there is
some good node that does not know m′.

Note that, as rounds progress, the left bar can
only move rightwards, because a node that has
already received kp will call UPDATE unless it
receives messages signed with kp for all subse-
quent rounds. Further, note that the right bar
can only move leftwards, since there is all-to-all
communication between the nodes in the sets Si.
Finally, note that when these two bars meet, a
corruption is detected.

Intuitively, the reason CHECK requires only
4 log∗ n rounds is because of a probabilistic re-
sult on the maximum length run in a sequence
of coin tosses. In particular, if we have a coin
that takes on value “B” with probability 1/4, and
value “G” with probability 3/4, and we toss it x
times, then the expected length of the longest
run of B’s is log x. Thus, if in some round, the
distance between the left bar and the right bar
is x, we expect in the next round this distance
will shrink to log x. Intuitively, we might ex-
pect that, if the quorum path is of length `, then
O(log∗ `) rounds will suffice before the distance
shrinks to 0. This intuition is formalized in Lem-
mas 1 and 2 of Section 3.

4

2.3 UPDATE

The UPDATE algorithm is described formally as
Algorithm 4. This algorithm has each node pre-
viously involved in SEND broadcast all messages
they have received to their own quorum and to
the neighboring quorums. A pair of nodes x and
y is declared to be in conflict if: 1) x was sched-
uled to send a message to y at some point in this
call to SEND; and 2) the message that x reported
that it received is different than the message that
y reported that it received. UPDATE then finds
at least one pair of nodes that are in conflict.

Moreover, in the case where a corruption oc-
curred during the call to SEND-LEADER, UP-
DATE will identify a pair of neighboring quo-
rums Qj and Qj+1, for some 1 ≤ j < ` such
that one of the two quorums currently has a
bad leader. Both leaders from Qj and Qj+1

are thrown out and new leaders are elected. If
these new leaders are not connected, then UP-
DATE keeps electing new leaders for these two
quorums until two leaders are elected that still
have an edge between them.3 The properties of
UPDATE are given in Lemma 3.

Since each quorum has a 3/4 fraction of good
nodes, if we throw out two both leaders of Qj
and Qj+1, and perform new elections, we make
progress. In particular, the expected number of
quorums that have good leaders will increase by
a positive amount. Intuitively, we would expect
that after this process repeats enough times, all
quorums will have good leaders. This intuition
is formalized in Lemma 4.

UPDATE makes use of a leader election proto-
col to 1) enable a quorum of nodes to agree on a
leader; and 2) ensure that the leader agreed on is
good with probability at least 3/4. We now de-
scribe how a quorum can elect a leader by using
secure multiparty computation (SMPC) [13].

Let n′ be the number of nodes in the quorum
and let each node in the quorum be assigned a
unique integer from 1 to n′. First, each node

3No edge is ever removed between a pair of good lead-
ers, and there are at least a 3/4 fraction of good leaders in
each quorum. Thus, for each election, there is probability
9/16 of electing two good leaders. Hence, in expectation,
we require only a constant number of elections before two
connected leaders will be elected.

in the quorum chooses an input: an integer uni-
formly distributed between 1 and n′. Then, the
nodes perform SMPC to find the output: the
sum of all their inputs modulo n′. The node in
the quorum associated with this output number
becomes the new leader of the quorum.

The leader selected will be uniformly dis-
tributed provided that at least a 3/4 fraction of
the nodes in the quorum are good. Finally, this
leader election protocol runs in O(1) time, and
requires O(log2 n) total messages.

2.4 Some Details

During the course of our algorithms, edges will
be removed from the network. We assume that
subsequent to the removal of an edge between
node p and node q, no message is ever sent, or
expected to be sent, from p to q or vice versa.

We note that in the the algorithm SEND-
LEADER, the node s sends messages to all nodes
in Q1. This additional communication ensures
that the nodes in Q1 all have received a message
from s. This ensures that in the case where s
is a bad node, it cannot cause two good leaders
to be in conflict during a call to UPDATE. The
same property holds true for the nodes in Q` and
the node r. This additional communication adds
O(log n) to the message cost of SEND-LEADER.

3 Analysis

In this section, we prove our main result, The-
orem 1.1. We first require several lemmas.
Throughout this section, we let nq represent the
number of quorums in the quorum graph, and
let all logarithms be base 2.

The proof of the following lemma is deferred
to the appendix due to space constraints.

Lemma 1. Consider a sequence of x nodes,
where each node in the sequence is bad inde-
pendently with probability 1/4. Then the prob-
ability that there is any substring of length
max(1, log x) bad nodes in this sequence is no
more than 1/2.

The next lemma shows that the algorithm
CHECK catches corruptions with probability at
least 1/2.

Lemma 2. Assume some bad leader has cor-

5

rupted a message in the last call to SEND-
LEADER. Then when the algorithm CHECK is
called, with probability at least 1/2, some node
will call UPDATE.

Proof. This proof makes use of the following
two facts.

Fact 1. Assume that in round i, UPDATE will
be called if a good node chosen in round i or
less at some quorum, Qj , reliably transmits its
message to a good node chosen in round i or less
at some quorum, Qk, where 1 ≤ j < k ≤ `.
Then in round i+ 1, there exist j′ and k′, where
j ≤ j′ ≤ k′ ≤ k,4 such that:

• Property 1: UPDATE is called if a node cho-
sen in round i+1 or less at Qj′ transmits its
message reliably to a node chosen in round
i+ 1 or less at Qk′ .

To prove this fact, note that the good nodes
in Qj that are chosen by CHECK in rounds i or
less, know s’s public key, kp. Thus they must
receive uncorrupted messages signed by s’s pri-
vate key, ks, in all rounds subsequent to i, or else
UPDATE will be triggered.

Fact 2. Fix a round i+ 1 of CHECK and let j′

and k′ be indices satisfying Property 1 of Fact 1
that minimize the value k′ − j′. Then in round
i+1, UPDATE is called unless all nodes that are
chosen between quorums Qj′ and Qk′ are bad.

To show Fact 2, assume by way of contradic-
tion that it is false. Then there exists x′, such
that j′ < x′ < k′, where the node p′ chosen in
round i+ 1 at Qx′ is good. There are two cases
for what happens in round i+ 1:

• Case 1: The node p′ receives the message
m′ sent by s. But then the indices j′ and x′

satisfy Property 1 of Fact 1 and x′−j′ < k′−
j′. This contradicts the assumption that the
indices j′ and k′ had the minimal distance
among all indices satisfying Property 1 in
Fact 1.

• Case 2: The node p′ does not receive the
message m′ sent by s. But then the indices

4Note that j′ = k′ corresponds to the case where a
conflict is detected.

x′ and k′ satisfy Property 1 of Fact 1 and
k′ − x′ < k′ − j′. This again contradicts
the assumption that the indices j′ and k′

had the minimal distance among all indices
satisfying Property 1 in Fact 1.

Now we can use these two facts to prove the
lemma. Let Xi be an indicator random variable
that it is equal to 1 if (k′− j′) ≤ log(k− j) and 0
otherwise. By Lemma 1, each Xi is 1 with prob-
ability at least 1/2. We require at least log∗ n of
the Xi random variables to be 1 in order for some
node to call UPDATE.5 Let X =

∑4 log∗ n
i=1 Xi.

Then E(X) = 2 log∗ n, and since the Xi’s are
independent, by Chernoff bounds,

Pr (X < (1− δ)2 log∗ n) ≤
(

eδ

(1 + δ)1+δ

)2 log∗ n

.

When 1− δ = 1/2, δ = 1
2 . For n > 16,

Pr (X < log∗ n) ≤

(
e

1
2

(32)
3
2

)2 log∗ n

<
1

2
.

Thus the probability that CHECK succeeds in
finding a corruption and calling UPDATE is at
least 1/2.

We say that a node q that is a leader of a quo-
rum Q is deposed if the quorum Q elects a new
leader uniformly at random with replacement.
The following lemma shows that if a corruption
is caught during a call to SEND-LEADER, UP-
DATE deposes at least one pair of leaders, and
each pair contains at least one bad node. Also,
UPDATE always removes at least one edge when
it is called, and at least one endpoint of each re-
moved edge is a bad node. The proof is deferred
to the appendix.

Lemma 3. If some bad leader has corrupted a
message in the last call to SEND-LEADER, then
the algorithm UPDATE will 1) identify a pair
of neighboring quorums Qj and Qj+1, for some
1 ≤ j < ` such that at least one of the two
quorums currently has a bad leader; and 2) elect
new leaders for these two quorums. Moreover,

5Here we assume ` ≤ n. However, we can achieve the
same asymptotic results assuming that ` is bounded by a
polynomial in n.

6

UPDATE will always remove at least one edge
from the network, and at least one endpoint of
each edge removed will be a bad node.

The next lemma bounds the expected num-
ber of times that a pair of neighboring leaders is
deposed. The proof is in the appendix.

Lemma 4. Assume there are j quorums in the
quorum graph that have bad leaders, for any pos-
itive integer j. Then, in expectation, the number
of corruptions that must be caught by CHECK
before the leaders of all quorums are good is no
more than 2j.

We can now prove our main theorem.

Proof of Theorem. We start with resource
costs. By Lemma 3, each time UPDATE is
called, at least one edge is removed from the net-
work. Hence, the resource costs of all calls to
UPDATE are bounded as the number of calls to
SEND grows large. Thus, for the amortized cost,
we consider only the cost from calls to CHECK
and SEND-LEADER. When sending through a
path of ` quorums, SEND-LEADER has latency
O(`) and message cost O(`+log n). CHECK has
latency and message cost O(`(log∗ n)2), but it is
called only with probability 1/(log∗ n)2. Hence
the amortized expected cost of SEND is O(`) la-
tency and O(`+ log n) messages.

More specifically, if we perform any number
of message sends through quorum paths, where
`M is the longest such path, and L is the sum
of the quorums traversed in all such paths, then
the expected total number of messages sent will
be O(L + t · `M log2 n log∗ n). This is true since
each call to UPDATE costs O(`M log2 n log∗ n)
messages, since we perform O(log∗ n) Byzantine
agreements over at most `M quorums. Note that,
since t is fixed, for large L this value is O(L).

We now bound the expected number of cor-
ruptions. Let X be a random variable giving
the number of quorums which initially have bad
leaders. For 1 ≤ i ≤ nq, let pi be the probabil-
ity that the i-th quorum has a bad leader. By
linearity of expectation, E(X) =

∑nq

i=1 pi. Note
that for 1 ≤ i ≤ nq, pi equals the number of bad
nodes in the i-th quorum divided by the size of
the i-th quorum. Thus, the denominator for each
pi is θ(log n) and the sum of all the numerators

is O(t log n), since each node is in O(log n) quo-
rums. This implies that E(X) = O(t)

Now by Lemma 4, the expected number of
times CHECK must catch a corruption before
the leaders of all quorums are good, is no more
than 2X. Hence, by linearity of expectation,
the expected number of corruptions that must
be caught is 2E(X) = O(t). Finally, if a bad
node caused a corruption during a call to SEND-
LEADER, then, by Lemmas 2 and 3, with prob-
ability at least 1/2, CHECK will catch it. As
a consequence, it will call UPDATE, which will
elect two new leaders. UPDATE is thus called
with probability 1/(log∗ n)2, so the expected to-
tal number of corruptions is O(t(log∗ n)2).

4 Empirical Results

4.1 Setup

In this section, we empirically compare the mes-
sage costs and the corrupted message counts
of two algorithms via simulation. The first al-
gorithm we simulate is the Butterfly algorithm
from [4]. This algorithm has no self-healing prop-
erties, and simply uses all-to-all communication
between quorums that are connected in a but-
terfly network. The second algorithm is Loglog,
wherein we apply a modified version of our self-
healing algorithm to the butterfly network.

For the Loglog algorithm, we modify CHECK
so that it requires fewer messages for practical
values of n. Instead of requiring O(`(log∗ n)2)
messages per check, we modify it to require
O(`(log log n)2) messages. When the nodes are
picked to participate in subquorums, we replace
incrementally adding one node to the Si sets
over each of 4 log∗ n rounds, with directly adding
log logn nodes in only one round. Effectively,
each log log n-sized subquorum Si engages in all-
to-all communication with its neighboring sub-
quorum Si+1.

We can show that our modified check fails with
o(1) probabilty. This new CHECK succeeds if
every subquorum has at least one good node.
The probability of any subquorum having only
bad nodes is at most (1/4)log logn = 1/ log2 n.
Union-bounding over all ` subquorums, the prob-
ability of our modified CHECK failing is at most

7

`/ log2 n. For the Butterfly topology, we have
` = O(log n), so the probability of our modified
CHECK failing is o(1).

Our simulations consist of a sequence of
queries over the network, consisting of a pair
of nodes s, r, chosen uniformly at random, such
that s sends a message to r. We simulate an
adversary who chooses at the beginning of each
simulation a fixed number of nodes to control
uniformly at random without replacement. Our
adversary attempts to corrupt messages between
nodes whenever possible. Aside from attempting
to corrupt messages, the adversary performs no
other attacks to attempt to deny service.

4.2 Results

The results of our experiments are shown in
Figures 2, 3 and 4. These results highlight
two strengths of our self-healing algorithms
(Loglog) when compared to algorithms without
self-healing (Butterfly). First, the cost of a
query decreases as the total number of queries
increases, as illustrated in Figure 2. Second, for
a fixed number of queries, the cost of a query
decreases as the total number of bad nodes de-
creases, as illustrated in Figure 3. In particular,
when there are no bad nodes, Loglog has dramat-
ically less cost than Butterfly .

We now describe our results in more detail.
Figure 2 shows the number of messages per query
versus the number of queries for Butterfly and
Loglog when the fraction of bad nodes is 1

8 . The
left plot is for a network of size n = 1,329, and
the right plot is for a network of size n = 14,116.
The two curves intersect when the total number
of queries is 5,909 and 98,168 respectively. These
intersection points represent an average of 4.4
queries per node for the left plot, and 7.0 queries
per node for the right plot.

Figure 3 shows the number of messages per
query versus the number of bad nodes for both
Butterfly and Loglog . In the left plot, the net-
work size n = 1,329 and the number of queries
is fixed at 10,000. In the right plot the network
size is n = 14,116 and the number of queries is
fixed at 100,000. The two curves intersect when
the fraction of bad nodes is .182 in the left plot,
and .126 in the right plot.

Figure 4 shows the number of corruptions ver-
sus the number of queries for Loglog , when the
fraction of bad nodes is 1/8. The left plot is
for a network of size n = 1,329, and the right
plot is for a network of size n = 14,116. The
number of corruptions flattens out at about 7.4
total corruptions for the left plot, and 408 total
corruptions for the right plot.

5 Conclusion and Future Work

We have presented algorithms that can signif-
icantly reduce communication cost in attack-
resistant peer-to-peer networks. The price we
pay for this improvement is the possibility of
message corruption. In particular, if there are
t ≤ n/4 bad nodes in the network, our algorithm
allows O((log∗ n)2t) message transmissions to be
corrupted in expectation, before the bad nodes
are quarantined so they cause no more corrup-
tions. We have simulated variants of our algo-
rithms and demonstrated that they perform well
in practice, particularly as the number of queries
grows large.

Many problems remain open. First, it seems
unlikely that the smallest number of corruptions
allowable by an attack-resistant algorithm with
optimal message complexity is O((log∗ n)2t).
Can we improve this upper bound to O(t) or
else prove a non-trivial lower bound? Second,
can we apply techniques in this paper to prob-
lems more general that enabling secure com-
munication? For example, can we create self-
healing algorithms for distributed computation
with Byzantine faults? Finally, can we optimize
constants and make use of heuristic techniques
in order to significantly improve our algorithms’
empirical performance?

8

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 3e+08

 3.5e+08

 4e+08

 2000 26500 51000 75500 100000

of

 M
es

sa
ge

s
P

er
 Q

ue
ry

of Queries

Network of size 1,329, 0.125 fraction bad

Butterfly
Loglog

 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 1.2e+09

 20000 265000 510000 755000 1e+06

of

 M
es

sa
ge

s
P

er
 Q

ue
ry

of Queries

Network of size 14,116, 0.125 fraction bad

Butterfly
Loglog

Figure 2: Number of messages per query versus total number of queries

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 0 50 100 150 200 250 300 350

of

 M
es

sa
ge

s
pe

r
Q

ue
ry

of Bad Nodes

Network of size 1,329, first 10,000 queries

Butterfly
Loglog

 0

 1e+08

 2e+08

 3e+08

 4e+08

 5e+08

 6e+08

 7e+08

 0 500 1000 1500 2000 2500 3000 3500 4000

of

 M
es

sa
ge

s
pe

r
Q

ue
ry

of Bad Nodes

Network of size 14,116, first 100,000 queries

Butterfly
Loglog

Figure 3: Number of messages per query versus the number of bad nodes

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 10 20 30 40 50 60 70 80 90 100

of

 C
or

ru
pt

io
ns

of Queries

Network of size 1,329, 0.125 fraction bad

Butterfly
Loglog

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 100 200 300 400 500 600 700 800 900 1000

of

 C
or

ru
pt

io
ns

of Queries

Network of size 14,116, 0.125 fraction bad

Butterfly
Loglog

Figure 4: Number of corruptions versus number of queries

9

Algorithm 3 CHECK (m, r)

Initialization: Node s generates public/private
key pair kp, ks to be used throughout this
procedure. Throughout the procedure, if a node
has previously received kp, then it verifies each
subsequent message with it. If a node receives
inconsistent messages or fails to receive and
verify an expected message, then it initiates a
call to UPDATE. We again let Q1, Q2, . . . Q`
be the quorum path from s to r in the quorum
graph. Finally, each Sj is empty initially, for
1 ≤ j ≤ `.

for i← 1, . . . , 4 log∗ n do
1. s sets R to be a ` by C ′ log n array of

random numbers, where C ′ log n is the
maximum size of any quorum. For any
k between 1 and C ′ log n, Rj,k is a uni-
formly random number between 1 and k
that will be used by quorum Qj .

2. s chooses a node, x1 uniformly at random
from all neighbors in Q1, and adds this
node to S1

3. s sets m′ to be the messages signed by ks
consisting of m, kp, r, and R

4. s sends m′ to all i nodes in S1 and also
the leader of Q1

5. For j ← 1, . . . , `− 1
(a) Sj ← Sj plus the leader of Qj
(b) The nodes in Sj set xj+1 to be a node

selected uniformly at random from
the nodes in Qj+1. To do this, they
let x be the number of nodes in Qj+1

and select the Rj,x node in Qj+1 (us-
ing a canonical ordering of the nodes
based on their IDs).

(c) The nodes in Sj set their new value
of Sj+1 to be equal to their old value
union the node xj+1

(d) The nodes in Sj send to xj+1 both
m′ and the IDs of all nodes in Sj+1.

(e) The node xj+1 sends m′ to all the
nodes in Sj+1.

6. The nodes in S` send m′ to the node r
end for

Algorithm 4 UPDATE

Assumptions: All broadcasts are done via
Byzantine agreement

1. The node, x, making the call to UPDATE
broadcasts this fact to its quorum, Q′, along
with all the messages that x has received dur-
ing this call to SEND. The nodes in Q′ check
that x received inconsistent messages before
proceeding.

2. The quorum Q′ propagates the fact that a call
to UPDATE is occurring, via all-to-all com-
munication, to all quorums Q1, Q2, . . . , Q`.

3. s broadcasts all messages it sent in this call to
SEND to the nodes in Q1 and these messages
are sent via all-to-all communication to all
remaining quorums Q2, Q3, . . . Q`.

4. Each node involved in this call to SEND com-
piles all messages they have received (and
from whom) in this call to SEND, and broad-
casts these messages to the nodes in its own
quorum, and all neighboring quorums in the
quorum path. The node s broadcasts the
messages to the nodes in Q1; and the node r
broadcasts the messages to the nodes in Q`.

5. A pair of nodes x and y is declared to be in
conflict if: 1) x was scheduled to send a mes-
sage to y at some point in this call to SEND;
and 2) the message that x reported that it
received is different than the message that y
reported that it received. For every pair of
nodes x, y that are in conflict the edge be-
tween x and y is removed. Specifically, the
edge (x, y) is removed from the edge list of
all nodes in the quorums of x and y.

6. A pair of leaders, (qj , qj+1), is deposed if they
are in conflict and qj is not in conflict with
qj−1. The quorums Qj and Qj+1 then both
hold elections for two new leaders. If the new
elected leaders have no edge between them,
then we repeatedly elect two new leaders until
the two leaders are connected.

10

References

[1] Baruch Awerbuch and Christian Scheideler.
Towards a scalable and robust dht. Theory
Comput. Syst., 45(2):234–260, 2009.

[2] I. Boman, J. Saia, C. Abdallah, and
E. Schamiloglu. Brief announcement: Self-
healing algorithms for reconfigurable net-
works. Stabilization, Safety, and Security of
Distributed Systems, pages 563–565, 2006.

[3] M. Datar. Butterflies and peer-to-peer net-
works. AlgorithmsESA 2002, pages 201–
222, 2002.

[4] Amos Fiat and Jared Saia. Censorship resis-
tant peer-to-peer content addressable net-
works. In Proceedings of the Thirteenth
ACM Symposium on Discrete Algorithms
(SODA), 2002.

[5] Amos Fiat and Jared Saia. Censorship resis-
tant peer-to-peer networks. Theory of Com-
puting, 3(1):1–23, 2007.

[6] Amos Fiat, Jared Saia, and Maxwell Young.
Making Chord Robust to Byzantine At-
tacks. In Proceedings of the European Sym-
posium on Algorithms(ESA), 2005.

[7] T. Hayes, N. Rustagi, J. Saia, and A. Tre-
han. The forgiving tree: a self-healing
distributed data structure. In Proceedings
of the twenty-seventh ACM symposium on
Principles of distributed computing, pages
203–212. ACM, 2008.

[8] T.P. Hayes, J. Saia, and A. Trehan. The for-
giving graph: a distributed data structure
for low stretch under adversarial attack. In
Proceedings of the 28th ACM symposium on
Principles of distributed computing, pages
121–130. ACM, 2009.

[9] K. Hildrum and J. Kubiatowicz. Asymptot-
ically efficient approaches to fault-tolerance
in peer-to-peer networks. Distributed Com-
puting, pages 321–336, 2003.

[10] V. King, S. Lonargan, J. Saia, and A. Tre-
han. Load balanced scalable byzantine

agreement through quorum building, with
full information. Distributed Computing and
Networking, pages 203–214, 2011.

[11] Moni Naor and Udi Wieder. A simple fault
tolerant distributed hash table. In Proceed-
ings of the Second International Workshop
on Peer-to-Peer Systems (IPTPS), 2003.

[12] G. Pandurangan and A. Trehan. Xheal: lo-
calized self-healing using expanders. In Pro-
ceedings of the twenty-ninth ACM sympo-
sium on Principles of distributed computing.
ACM, 2011.

[13] T. Rabin and M. Ben-Or. Verifiable secret
sharing and multiparty protocols with hon-
est majority. In Proceedings of the twenty-
first annual ACM symposium on Theory of
computing, pages 73–85. ACM, 1989.

[14] J. Saia and A. Trehan. Picking up the
pieces: Self-healing in reconfigurable net-
works. In Parallel and Distributed Process-
ing, 2008. IPDPS 2008. IEEE International
Symposium on, pages 1–12. IEEE, 2008.

[15] J. Saia and M. Young. Reducing commu-
nication costs in robust peer-to-peer net-
works. Information Processing Letters,
106(4):152–158, 2008.

[16] A.D. Sarma and A. Trehan. Edge-
preserving self-healing: keeping network
backbones densely connected. Arxiv
preprint arXiv:1108.5893, 2011.

[17] C. Scheideler. How to Spread Adversar-
ial Nodes? Rotate! In Proceedings of the
Thirty-Seventh Annual ACM Symposium
on Theory of Computing(STOC), 2005.

[18] TOR Website.
https://www.torproject.org/.

[19] M Young, A Kate, I Goldberg, and
M Karsten. Practical robust communication
in dhts tolerating a byzantine adversary. In
ICDCS, pages 263–272, 2010.

11

A Appendix - Deferred Proofs

In this appendix, we provide proofs that were
deferred from the main paper.
Lemma 1. Consider a sequence of x nodes,
where each node in the sequence is bad inde-
pendently with probability 1/4. Then the prob-
ability that there is any substring of length
max(1, log x) bad nodes in this sequence is no
more than 1/2.

Proof. The probability of a specific substring of
log x nodes being all bad is(

1

4

)log x

=
1

x2
.

Union bounding over all possible substrings of
length log x, the probability of any all-bad sub-
string existing is at most

x
1

x2
=

1

x
≤ 1

2
,

for x ≥ 2. For x = 1, max(1, log x) = 1, and
the probability of having a subsequence of 1 bad
node in a sequence of 1 bad node is 1/4.

Lemma 3. If some bad leader has corrupted
a message in the last call to SEND-LEADER,
then the algorithm UPDATE will 1) identify a
pair of neighboring quorums Qj and Qj+1, for
some 1 ≤ j < ` such that at least one of the two
quorums currently has a bad leader; and 2) elect
new leaders for these two quorums. Moreover,
UPDATE will always remove at least one edge
from the network, and at least one endpoint of
each edge removed will be a bad node.

Proof. First, we show that if a pair of nodes x
and y is in conflict, then at least one of them
is bad. Assume not. Then both x and y are
good. Then node x would have truthfully re-
ported what it received; any message that x re-
ceived would have been sent directly to y; and y
would have truthfully reported what it received
from x. But this is a contradiction, since for x
and y to be in conflict, y must have reported that
it received from x something different than what
x reported receiving.

Now consider the case where a bad leader
corrupted a message in the last call to SEND-
LEADER. By the definition of corruption, there

must be two good leaders qj and qk such that
j < k and qj received the message m′ sent by
node s, and qk did not. We now show that some
pair of leaders between qj and qk will be in con-
flict. Assume this is not the case. Then for all
x, where j ≤ x ≤ k − 1, leaders qx and qx+1 are
not in conflict. But then, since leader qj received
the message m′, and there are no pairs of leaders
in conflict, it must be the case that the leader qk
received the message m′. This is a contradiction.
Thus, UPDATE will find two leaders that are in
conflict, and at least one of them will be bad.

Now we prove that at least one pair of nodes
is found to be in conflict as a result of trigger-
ing UPDATE. Assume that no pair of nodes is
in conflict. Then for every pair of nodes x and
y, such that x was scheduled to send a message
to y during any round i of CHECK, x and y
must have reported that they received the same
message in round i. In particular, this implies
via induction, that for every round i, for all j,
where 1 ≤ j ≤ `, all nodes in the sets Sj must
have broadcasted that they received the message
m′ that was initially sent by node s in round i.
But if this is the case, the node x that initially
called UPDATE would have received no incon-
sistent messages. This is a contradiction since
in such a case, node x would have been unsuc-
cessful in trying to initiate a call to UPDATE.
Thus, some pair of nodes must be found to be in
conflict, and at least one of them is bad.

Note that the above proof shows that, even if
the node s is bad, a call to UPDATE will remove
an edge between two nodes, at least one of which
is bad. Thus, a bad s can only force calls to
UPDATE a fixed number of times.

Lemma 4. Assume there are j quorums in the
quorum graph that have bad leaders, for any pos-
itive integer j. Then, in expectation, the number
of corruptions that must be caught by CHECK
before the leaders of all quorums are good is no
more than 2j.

Proof. By Lemma 3, if a corruption occurred in
SEND-LEADER, it is caught by CHECK, and
UPDATE is called, then two neighboring quo-
rums, Qj , Qj+1, for some 1 ≤ j < `, will be
identified such that at least one leader of these

12

quorums are bad. Then, the current leaders of
these quorums will be deposed and new leaders
will be elected for both quorums.

We will model the properties of our quorum
graph with a walk on a Markov chain with states
0, 1, . . . , nq.

6 The walk will be at state i if exactly
i quorums in the quorum graph have bad leaders.
Note that state 0 is an absorbing state: if no
quorums have bad leaders, there will no longer
be any corruptions, and so there is no possibility
of any good leaders being deposed.

When two new leaders are elected, let Pbb be
equal to the probability that two bad leaders are
elected; Pbg be equal to the probability that one
bad and one good leader are elected; and Pgg be
equal to the probability that two good leaders are
elected. Note that Pbb ≤ 1/16, and Pgg ≥ 9/16.

Transitions occur whenever a corruption is
caught by CHECK and UPDATE is called. If
this happens, two leaders are deposed (one of
which is guaranteed to be bad); and two new
leaders are elected. We want to bound the ex-
pected number of corruptions that are detected
until we reach state 0, which is equivalent to
bounding the expected number of steps in the
walk until we reach state 0.

We now give transition probabilities on the
Markov chain to upper bound the expected num-
ber of corruptions until all leaders are good.
When in any state i, 0 < i < nq, the walk tran-
sitions to state i− 1, with probability 9/16; the
walk transitions to state i + 1 with probability
1/16; and the walk stays in state i with proba-
bility 6/16. If the walk is in state 0, it will stay
there with probability 1.

Let f(i) be the expected number of steps on
this Markov chain to reach state 0, given that
we are currently in state i. Note that f(i) is an
upper bound on the expected number of pairs
of leaders that must be deposed before all lead-
ers are good, given that there are i bad leaders
currently.

Solving for f is a simple variant of the “gam-
blers ruin” problem. We include it here for com-
pleteness. We have the following equations for

6recall nq = θ(n) is the number of quorums in the
quorum graph

f . f(0) = 0; and for all i, 1 ≤ i < nq

f(i) = 1 +
9

16
f(i− 1) +

6

16
f(i) +

1

16
f(i+ 1)

Rewriting this equation, we have for all i, 1 ≤
i < nq

10f(i) = 16 + 9f(i− 1) + f(i+ 1).

For any j, where 1 ≤ j ≤ nq, if we sum the above
equations over all i, 1 ≤ i ≤ j − 1, we obtain:

f(j) = 9f(j − 1) + f(1)− 16(j − 1)− 9f(0)

= 9f(j − 1) + f(1)− 16(j − 1)

We now prove that for all j, where 0 ≤ j ≤ nq,
that f(j) ≤ 2j. The base case, f(0) = 0, is
trivially true. For the inductive step, we have

f(j) = 9f(j − 1) + f(1)− 16(j − 1)

≤ 18(j − 1) + 2− 16(j − 1)

= 2j

13

