
Efficiently Computing the

Robinson-Foulds Metric∗

Nicholas D. Pattengale1, Eric J. Gottlieb1, Bernard M.E. Moret1,2

{nickp, ejgottl, moret}@cs.unm.edu
1Department of Computer Science, University of New Mexico

2School of Computer and Communication Sciences, Ecole Polytechnique Fédérale de Lausanne,

and Swiss Institute for Bioinformatics

Abstract

The Robinson-Foulds (RF) metric is the measure most widely used
in comparing phylogenetic trees; it can be computed in linear time using
Day’s algorithm. When faced with the need to compare large numbers of
large trees, however, even linear time becomes prohibitive. We present a
randomized approximation scheme that provides, in sublinear time and
with high probability, a (1+ε) approximation of the true RF metric. Our
approach is to use a sublinear-space embedding of the trees, combined
with an application of the Johnson-Lindenstrauss lemma to approximate
vector norms very rapidly. We complement our algorithm by presenting
an efficient embedding procedure, thereby resolving an open issue from
the preliminary version of this paper. We have also improved the per-
formance of Day’s (exact) algorithm in practice by using techniques dis-
covered while implementing our approximation scheme. Indeed, we give a
unified framework for edge-based tree algorithms in which implementation
tradeoffs are clear. Finally, we present detailed experimental results illus-
trating the precision and running-time tradeoffs as well as demonstrating
the speed of our approach. Our new implementation, FastRF, is available
as an open-source tool for phylogenetic analysis.

1 Introduction

The need to compare phylogenetic trees is common. Many reconstruction meth-
ods (e.g., maximum parsimony and Bayesian methods) produce a large num-
ber of possible trees. Trees are also built for the same collection of organisms
from different types of data (e.g., nucleotide or codon sequences for one or
more genes, gene-order data, protein folds, but also metabolic and morpho-
logical data). Phylogenetic trees can be compared and the result summarized

∗A preliminary version of this paper appeared in the proceedings of RECOMB

2006 [Pattengale and Moret (2006)].

1

in many ways; for instance, consensus methods [Bryant (2002)] return a sin-
gle tree that best represents the information present in the entire collection,
while supertree methods (typically used when the trees are built on different,
overlapping subsets of organisms) [Bininda-Edmonds (2004)] combine the in-
dividual trees into a single larger one. A more elementary step is to produce
estimates of how much the trees differ from each other, by computing pairwise
similarity or distance measures. Here again, many approaches have been used,
such as computing pairwise edit distances based on tree rearrangement oper-
ators [DasGupta et al. (2000), Allen and Steel (2001)]; the most common dis-
tance measure between two trees, however, is the Robinson-Foulds (RF) metric
[Robinson and Foulds (1981)]. This measure is in widespread use because it can
be computed in linear time [Day (1985)], is based directly on the edge structure
of the trees and their induced bipartitions, and is a lower bound on the com-
putationally more expensive edit distances. Yet, as the size of datasets used
by researchers grows ever larger, even a linear-time computation of pairwise
distances becomes onerous.

In this paper, we present the first sublinear-time algorithm to compute all
pairwise RF distances among a collection of trees. Our algorithm is a random-
ized approximation scheme: it returns, with high probability, an approximation
that is guaranteed to be within (1 + ε) of the true distance, where ε > 0 can be
chosen arbitrarily small. Our approach uses a sublinear-space embedding of the
trees, combined with an application of the lemma of [Johnson and Lindenstrauss (1984)]
to approximate vector norms rapidly.

In [Pattengale and Moret (2006)] (we will refer to that algorithm as the
P&M algorithm), we had yet to design an efficient procedure for embedding
trees. Thus, while our algorithm outperformed Day’s spectacularly in certain
settings, we were not able to match the latter’s asymptotic running time for a
single pairwise distance computation, nor would our technique gracefully scale
as a function of the size of the input trees. We have since designed an efficient
embedding procedure, presented here, that enables our algorithm to dominate
Day’s algorithm in all possible settings and that provides graceful scaling in
terms of all parameters.

We have reimplemented the P&M algorithm as a standalone open-source tool
FastRF. We have used FastRF to improve significantly the comprehensiveness
(as compared to [Pattengale and Moret (2006)]) of our experiments to assess
the quality and speed of our approach. Additionally, our new implementation
should better facilitate the integration of our algorithm into actual phylogenetic
analyses.

In Section 2 we review terminology needed for the rest of the paper. In
Section 3 we introduce the theory that underlies our approximation algorithm.
In Section 4 we cover practical issues such as our efficient procedure for embed-
ding, discuss our improvements to the performance of Day’s (exact) algorithm
[Day (1985)] in practice by using techniques discovered while implementing our
approximation scheme, and present a common framework for edge-based algo-
rithms on trees. In Section 5 we present experimental results that address issues
such as the observed quality of approximation, the consequences of the quality

2

approximation on simulated phylogenetic data, the tradeoffs between approxi-
mation quality and running time, and the running time of our technique versus
Day’s algorithm applied to each pair of trees.

2 Terminology and Definitions

A phylogenetic tree is an undirected, connected, acyclic graph; its leaves (also
called tips) correspond to the taxa and its internal nodes all have degree at least
3. If every internal node of a phylogenetic tree has degree equal to 3, the tree is
said to be binary or fully resolved. We will use Tn to denote a set of phylogenetic
trees on n taxa.

Removing an edge (a, b) from a tree T disconnects the tree, creating two
smaller trees, Ta (containing a) and Tb (containing b). Note that a (resp., b)
might now have only degree 2 in Ta (resp., Tb), in which case we remove it
(connecting its two neighbors directly to each other). in order to preserve the
constraint on the degrees of internal nodes. Cutting T into Ta and Tb induces
a bipartition (or split) of the set S of taxa of T into the set A of taxa of Ta and
the set B of taxa of Tb, a bipartition that we denote A|B. Thus there exists a
one-to-one correspondence between the bipartitions of S and the edges of T , so
that each tree is uniquely characterized by the set of bipartitions it induces.

If S has n taxa, then any unrooted phylogenetic tree on S has at most 2n−3
edges and so induces at most 2n − 3 bipartitions—compared to the

NB =

⌊n

2
⌋

∑

i=1

(

n

i

)

≈ 2n−1

possible bipartitions of the set S. Moreover, n of these bipartitions are trivial
bipartitions that split S into a one-element set against the remaining n − 1
elements—trivial, because these n bipartitions are common to all phylogenetic
trees on S. We shall denote by B(T) the set of (at most n − 3) nontrivial
bipartitions of S induced by T .

The Robinson-Foulds distance [Robinson and Foulds (1981)] between two
trees on the same set S of taxa is simply a normalized count of the biparti-
tions induced by one tree, but not by the other.

Definition 1. Given a set S of taxa and two phylogenetic trees, T1 and T2, on
S, the Robinson-Foulds distance between T1 and T2 is

RF (T1, T2) =
1

2
(|B(T1) − B(T2)| + |B(T2) − B(T1)|)

This measure of dissimilarity is easily seen to be a metric [Robinson and Foulds (1981)]
and can be computed in linear time [Day (1985)].

Edit distances between trees are based on one or more operators that al-
ter the structure of a tree. Two commonly used operators are the Nearest
Neighbor Interchange (NNI) and the more powerful Tree Bisection and Recon-
nection (TBR)—see [Allen and Steel (2001), Bryant (2004)] for definitions and

3

discussions of these operators. Applying the NNI operator to T1 can change
RF (T1, T2) by at most 1, while applying the TBR operator to T1 can change
RF (T1, T2) almost arbitrarily. We use these operators in generating test sets
for our RF approximation routine, as discussed in Section 5.

3 Theoretical Basis for the Algorithm

The key to our approach is representation. Our approximation algorithm is a
reduction to the computation of vector norms in a suitable vector space and
the sublinear running time results from our ability to represent the necessary
characteristics of phylogenetic trees in sublinear space. More specifically, we
represent phylogenetic trees as vectors in such a way that RF distances become
simply the ‖ · ‖1-norms of the difference vectors, then generalize the result to
arbitrary ‖·‖p-norms for p ≥ 1.1 We then use a technique from high-dimensional
geometry to reduce the dimensionality of tree vectors while maintaining pairwise
‖·‖2-norms. Finally we combine these techniques to obtain a fast approximation
algorithm for computing RF distances.

3.1 Bit-Vector Representation

Consider an injection f :
⋃

T∈Tn

B(T) → N that assigns a unique integer in the
interval [1, NB] (recall that NB is the number of possible bipartitions of the
set) to each bipartition.

Definition 2. The bit-vector representation of a phylogenetic tree T is vT ∈
R

NB where we have

vT [i] =

{

1 f−1(i) ∈ T

0 otherwise

Obviously, this representation would be quite space-consuming (and propor-
tionally time-consuming) to produce; fortunately, our linear-time embedding
procedure (Section 4) completely obviates the need to compute this representa-
tion explicitly.

By construction the ‖.‖1-norm between tree vectors is the RF distance.

Theorem 1. ∀T1, T2 ∈ Tn, RF (T1, T2) = 1

2
‖vT1

− vT2
‖1

Proof. ∀s ∈ B(T1) − B(T2) (resp., B(T2) − B(T1)), we have vT1
[f(s)] = 1

(resp., vT2
[f(s)] = 1) and vT2

[f(s)] = 0 (resp., vT2
[f(s)] = 0). Now, ∀s ∈

B(T1)∩B(T2), we have vT1
= vT2

= 1 and ∀s ∈
⋃

T∈Tn

B(T)− (B(T1)∪B(T2)),
we have vT1

= vT2
= 0. Thus we can conclude

‖vT1
− vT2

‖1 = |B(T1) − B(T2)| + |B(T2) − B(T1)| = 2 · RF (T1, T2)

1The ‖ · ‖p-norm of a vector v = (v1v2 . . . vk) is ‖v‖p =
“

Pk
i=1

|vi|
p

” 1

p

.

4

3.2 Properties of ‖ · ‖p-Norms of Bit-Vectors

The following theorem exposes an interesting property about norms of bit-
vectors and closely related vectors: it is trivial to recover the ‖.‖p-norm, p ≥ 1,
from the ‖.‖q-norm, q ≥ 1, where p 6= q. This result will be useful because the
Johnson-Lindenstrauss lemma (Section 3.3) approximates ‖.‖2-norms whereas,
in order to compute the RF distance, we need to approximate ‖.‖1-norms.

Theorem 2. For an arbitrary vector v ∈ R
NB where every element is chosen

from the set {−k, 0, k} (for arbitrary k > 0), and for p > 1, we have ‖v‖1 =
k1−p · (‖v‖p)

p.

Proof. Assume that v has c entries of value ±k; we can write

‖v‖p =

(

NB
∑

i=1

(|vi|)
p

)

1

p

= (ckp)
1

p = c
1

p k

‖v‖1 =

NB
∑

i=1

|vi| = ck = c
p−1

p (c
1

p k) = c
p−1

p ‖v‖p

Raising the first result to the power (p − 1) and solving for c
p−1

p yields

c
p−1

p = k1−p · (‖v‖p)
p−1

and substituting into the second result finally yields

‖v‖1 = k1−p · (‖v‖p)
p

Corollary 1. For bit-vectors (k = 1) we have ‖v‖1 = (‖v‖p)
p; in particular,

we have ‖v‖1 = (‖v‖2)
2.

3.3 Reducing Dimensionality

We briefly outline a result of [Johnson and Lindenstrauss (1984)] for norm-
preserving embeddings; for a more detailed treatment, see [Indyk and Motwani (1998),
Indyk (2001), Linial et al. (1995)].

Consider an m × NB matrix V in which we want to compute the ‖ · ‖2-
norm between pairs of row vectors. Näıvely calculating one pairwise norm costs
O(NB) time. The Johnson-Lindenstrauss lemma states that, if we first multiply
V by another matrix F of size NB × 4lnm

ε2 , filled with random numbers from
the normal distribution (0, 1), we can use the pairwise norms between rows of
V ·F as good approximations of the pairwise norms between corresponding rows
of V .

Specifically, for given ε and F , we have, with probability at least 1 − m−2,

∀u, v ∈ V, (1 − ε)‖u − v‖2 ≤ ‖(u − v)F‖2 ≤ (1 + ε)‖u − v‖2

5

NB O(m)

=

V F V’

xm NB m O(m)x x

logx

log

Figure 1: A sketch of randomized embedding. Each tree is a row in V ; F
is a random matrix; each row of V ′ is the embedded representation of the
corresponding row vector in V .

The dimensionality of (u − v)F is now 4lnm
ε2 and thus independent of NB.

Other probability distributions can also be used for populating the elements
of F [Achlioptas (2003)]. Figure 1 illustrates the basic embedding technique.

3.4 The Algorithm

The following theorem represents one of our main contributions. Namely, we
can apply the JL lemma to tree bit-vectors in order to obtain a high-quality
approximation of the RF metric between the original trees. Additionally, we
can directly use the bounds from the JL lemma to establish the quality of our
approximation.

Theorem 3. Taking the square of the ‖.‖2-norm between embedded tree bit-
vectors constitutes calculating a (1+ε)-approximation of the RF distance between
the original trees.

Proof. Using the JL lemma preserves (up to the multiplicative factor of 1 ± ε)
the ‖.‖2-norm between the non-embedded vectors. Corollary 1 establishes that,
when dealing with bit-vectors, we need only to square the ‖.‖2-norm to recover
the ‖.‖1-norm. Thus, since tree vectors are bit vectors, the JL embedding
additionally preserves the ‖.‖1-norm. Finally, Theorem 1 states that the ‖.‖1-
norm between tree bit-vectors is the RF-metric between the two source trees,
so we are done.

Because the JL lemma is constructive, Theorem 3 provides a first algorithm.
Given a set of m phylogenetic trees:

1. stack their bit-vector representations (recall that each has dimensionality
NB) to form an m × NB matrix;

2. perform the embedding of Section 3.3 thereby reducing the row dimen-
sionality of the matrix while preserving pointwise ‖ · ‖2-norms between
row vectors; and

3. for any pair of row vectors vT1, vT2 (i.e., embedded trees), obtain the
approximate RF distance by computing (‖vT1 − vT2‖2)

2.

6

However, this is the theoretical form of the algorithm. In practice, we do not
compute the large matrix. Rather, we are able to incrementally embed the tree
while performing a tree traversal. The manner in which this is performed is
covered in Section 4.

Since the dimensionality of the embedded row vectors is O(log m), the time
complexity of computing the approximate RF distance between two trees is
also O(log m), so that our technique is asymptotically faster whenever we have
log m = o(n).

4 A Framework and Implementation Tradeoffs

We have developed several efficient implementations of our approximation scheme.
Additionally, we have improved the performance of Day’s (exact) algorithm
[Day (1985)] in practice by using techniques discovered while implementing our
approximation scheme.

We begin by presenting a general framework for which all of our algorithms
(as well as Day’s) are instantiations. Recall that each edge in a tree is identified
by the bipartition it induces on the set of taxa. Thus implementing any RF
algorithm invariably involves deciding upon a representation for taxa which
can be efficiently accumulated into sets (of taxa). Accordingly each of our
algorithms start by labeling taxa according to some scheme. The label for each
taxon is used to represent the bipartition induced by its incident edge. We then
provide, for each labeling scheme, an operator for accumulating two labels (i.e.,
two subtrees that meet at a common internal vertex) into a single label. To
ensure the invariance of labeling across traversal strategies, we require that the
accumulation operators be associative and commutative. The specific traversal
strategy employed in our family of algorithms is a depth first traversal from a
common, arbitrarily chosen, root taxon.

4.1 Direct Embedding

The P&M algorithm [Pattengale and Moret (2006)] used edge labels of size
O(n), namely a bit vector per edge. For each edge label there was one bit
per leaf, and all leaves on one side of the bipartition (induced by an edge) were
of the same value. The accumulation operator was bitwise-OR. Consequently,
performing a tree traversal (which takes O(n) time) while performing a bitwise-
OR on two edge labels at each step (also incurs O(n)) yielded a total complexity
O(n2) per tree for the embedding step.

Overcoming this problem requires eliminating the O(n) length of edge labels.
Recall that the essential feature of the embedding step from Section 3.3 is to
establish a correspondence between tree edges and random vectors (of length
O(logm)). Also recall that an embedded tree is simply the sum of the random
vectors that correspond to the edges found in the original tree. We now describe
how to generate edge labels of length O(logm) that are, in fact, the random
vectors corresponding to tree edges.

7

In Section 3.3 we noted that distributions other than Gaussian can be used as
elements in the random vectors. Consider one such (non-normalized) discrete
distribution where p(X = 1) = 1

6
, p(X = 0) = 2

3
, and p(X = −1) = 1

6
.

Next consider the mapping l : {0, 1, 2, 3, 4, 5} → {−1, 0, 0, 0, 0, 1} such that
choosing from the interval [0, 5] uniformly at random yields the aforementioned
distribution by virtue of the mapping. Now, assign to each taxon an edge label
consisting a O(logm)-tuple (see Section 3.3 for the specific size requirement) of
random numbers chosen uniformly from the interval [0, 5]. The accumulation
operator is taken to be addition modulo 6. Thus every edge label directly maps
through l into a random vector.2

Assuming unique labels for leaves (and the same leaf labels are used across
the tree set), it is clearly the case that equivalent edges will map to the same
random vector. However it is the case that two distinct edges may end up
mapping to the same random value (i.e., a collision3). The probability of this
occurring is equivalent to the event that two randomly chosen vectors are equiv-
alent, which is the same probability that two rows from the embedding matrix
are equivalent.

4.2 Improving Day’s Algorithm

Because Day’s algorithm runs in linear time and must traverse both trees, it
follows that it must employ a constant-space edge labeling and a constant-time
accumulation operator. Edge labels are in fact intervals, which need only be
represented by their extrema, while the accumulation operator is simply interval
union over adjacent intervals. As outlined in [Day (1985)], Day’s algorithm
can be thought of as constructing a perfect hash function, where hashes are
computed in O(1) time, on the edges of one of the two trees under comparison.

It is possible to hash edges more conventionally [Amenta et al. (2003)]. In
our implementation we begin by assigning to each taxon a random b-bit vector
(for most practical purposes, a 64-bit integer). We then use the XOR operator
for edge label accumulation. We then proceed, as in Day’s algorithm, to compare
two trees by comparing their lists of edge hashes. The major improvement in
practice arises because in our case the hash needs only to be computed once
per edge, whereas in Day’s algorithm a (perfect) hash must be computed O(m)
times in order to perform

(

m
2

)

comparisons. The risk in this approach (as with
any conventional hash) is in collision, whose probability is derived in Section 4.3.
Thus our approach carries a failure probability (albeit exponentially small).

For a fixed b, hashing in this way takes O(n) time per tree, or O(mn) time
overall, which is optimal if every edge in every tree must be examined.

2from the correct distribution since the sum (modulo k) of two uniform random vectors is,
itself, a uniform random vector

3a term from hash functions, which this scheme turns out to embody, see Section 4.2 to
see how recognizing this technique as hashing helps to improve the performance of Day’s
algorithm in practice

8

4.2.1 Combining Hashing with Embedding

Lessons from the previous section prompted us to investigate using conventional
hashing in the approximation algorithm as well. We proceed by again using a
b-bit random vector for leaf labels, and XOR as an accumulation operator. We
then map (by using a conventional hash table) edge labels to random O(logm)
length vectors from the appropriate distribution. This scheme turns out to be
quickest in practice (of our approximation implementations) and as such is the
approach employed in experimentation (Section 5).

Refer to Table 1 for a synopsis of all the algorithms presented. The column
Performance refers to the running time of computing all pairwise RF distances
among a set of m trees, where each tree is defined on the same n taxa. The al-
gorithm denoted as näıve refers to the natural (trivial) quadratic RF algorithm,
which is used in experimentation (Sect. 5).

Table 1: Summary of Expected Algorithm Asymptotic Performance

Algorithm Result Edge Label Operator Performance

Näıve exact taxa set union O(m2n2)
P&M approximate bit vector OR O(m(n2 + m log m))

Section 4.1 approximate tuple addition O(m log m(n + m))
Day’s exact interval union O(m(nm))

Section 4.2 exact bit vector XOR O(m(nm))
Section 4.2.1 approximate bit vector XOR O(m log m(n + m))

4.3 Probability of Collision

The primary disadvantage of a traditional hashing scheme, compared to Day’s
algorithm (which constructs a perfect hash), is the possibility of a hashing col-
lision (i.e., two unequal edges being assigned the same label). Given a good
hashing function, the probability of a collision decreases exponentially with the
number of bits chosen for representing edge labels. The exclusive-OR function
(⊕), which we use, has this property.

Definition 3.
∏

A = ℓ1 ⊕ ℓ2 ⊕ . . . ⊕ ℓk where taxa A = {a1, a2, . . . , ak} and ℓi

is a bit vector label for taxon ai

Theorem 4. Given a set S of taxa with unique random b-bit vector taxon labels,
and given two arbitrary subsets of taxa A ⊂ S and B ⊂ S, we have

A 6= B =⇒
∏

A

=
∏

B

with probability p ≤
1

2b

Proof. Let x be a bit vector, y a random bit vector, and z = x⊕ y. Then z will
also be a random bit vector which is uncorrelated with x (although obviously
the triple x, y, z is correlated). By induction,

∏

A will be random relative to
∏

B if there is a greater than one taxon difference between A and B. If there is

9

only a single taxon difference between them, then A and B are constrained to
be different as a consequence of the unique labels assigned to the taxa). Thus,
the probability of

∏

A =
∏

B, for A 6= B, is either zero or the same as the
probability of two random bit vectors of size b being equal, namely 1/2b.

Corollary 2. Given a forest of trees with e unique edges over n taxa, and given
unique taxon labels of b bits, the probability, pf , that one or more pairs of edges

will hash to the same label is pf < 1 − (1 − 2−b)(
e

2
) < e2/2b+1.

Proof. Assuming that all hashing collisions in a forest of edges are uncorrelated,
the expectation value of the number of collisions which might occur in a forest
of e edges is 〈c〉 =

(

e
2

)

/2b < e2/2b+1. In general, hashing collisions need not
be uncorrelated. A lower bound on 〈c〉 will occur when collisions are negatively
correlated such that no more than one collision may occur in a forest. In this case
pf = 〈c〉. We have already seen that 2−b is an upper bound on the probability
an arbitrary pair of distinct edges will hash to the same value. As a consequence

1− (1−2−b)(
e

2
) is an upper bound on the probability that one or more collisions

will occur in a forest of edges. Therefore, regardless of the distribution of edges

in a forest, pf ≤ 1 − (1 − 2−b)(
e

2
) < e2/2b+1.

5 Experiments

We have implemented the algorithms from Section 4 (with the exception of the
Section 4.1 algorithm), in order to evaluate their performance experimentally,
both in terms of speed and in terms of accuracy. We have run a large series
of experiments, all on the CIPRES4 cluster at the San Diego Supercomputing
Center, a 16-node Western Scientific Fusion A8 running RedHat Linux, in which
each node is an 8-way Opteron 850 system with 32GB of memory.

In the following experiments we generated forests of trees according to the
following procedure (for various values of numClusters,treesPerCluster,j,k):

1. Generate a phylogenetic tree Tseed uniformly at random from TnumTaxa

2. do numClusters times

(a) create a new tree TclusterSeed by doing a random number (0 ≤ k <
maxTBR) of TBR operations to Tseed.

(b) write TclusterSeed to file
(c) do treesPerCluster times

i. create a new tree T ′ by doing a random number (0 ≤ j <
maxNNI) of NNI operations to TclusterSeed.

ii. write T ′ to file

This procedure creates the classic “islands” of trees [Maddison (1991)] by pro-
viding pairwise distant trees as seeds and generating a cluster of new trees
around each seed tree.

4The Cyber Infrastructure for Phylogenetic Research project, at www.phylo.org, is a major
NSF-sponsored project involving over 15 institutions and led by B.M.E. Moret.

10

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80

≈
R

F
D

is
ta

n
ce

(f
a
st

a
lg

o
ri

th
m

)

Exact RF Distance (Day’s algorithm)

m
b

=
=

1.03
−0.44

±
±

0.00
0.04

±50%
mx + b

Figure 2: 50% error bounds approximate versus exact RF distance

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80

≈
R

F
D

is
ta

n
ce

(f
a
st

a
lg

o
ri

th
m

)

Exact RF Distance (Day’s algorithm)

m
b

=
=

1.01
−0.10

±
±

0.00
0.01

±10%
mx + b

Figure 3: 10% error bounds approximate versus exact RF distance

5.1 Validating the Approximation Bounds

In this experiment, we focused on the difference between the exact and the
approximate distances. 10 clusters of 100 trees each were constructed using

11

10 TBR operations per cluster and 5 NNI operations per tree. A 1000 × 1000
matrix of Robinson-Foulds pairwise distances was then constructed first using
Day’s algorithm and then twice using the Section 4.2.1 algorithm (once with
ε = 0.5 and once with ε = 0.1). Figures 2 and 3 are scatter plots using the
results from Day’s algorithm vs. the results from the Section 4.2.1 algorithm.
The variation due to the embedding is easily seen to obey the 1 ± ε constraint.

Table 2: Parameter Values Used to Generate Clustering Data

Parameter Values Parameter Values

TBRs 5, 8, 11, 14 clusters 2, 3, . . . , 10
NNIs 10, 20, . . . , 100 trees per cluster 50, 100
taxa 100

5.2 Consequences of Approximation

In this experiment, we generated 7200 forests using all permutations of various
parameter values, as described in Table 2. Each permutation of parameters was
used to generate 10 different forests (for a total of 72000). A distance matrix
was then constructed for each forest using the Section 4.2 algorithm (which, if
no hashing collisions occur, is exact, like Day’s algorithm) and the Section 4.2.1
algorithm using values of ε = 0.1, 0.2, . . . , 1.0. 64-bit edge labels were used to
avoid hash collisions. These distances were then used to cluster the trees us-
ing a hierarchical agglomerative clustering algorithm based on cluster distances
defined as the distance between the farthest separated cluster members. As a
stopping criterion, the same number of clusters were generated as existed in the
original data. The Rand index[Rand (1971)] (the most commonly used measure
of clustering quality) was then computed and plotted as a function of ε. Figure 4
shows the result. (Note that ε = 0 implies the use of the Section 4.2 algorithm.)

From these data, it appears that an approximation bound of 10% to 20%
may be acceptable in some cases (note the tight bounds on the curve at these
values of ε), although of course results will depend on the distribution of trees
in the data and on the analysis methods used.

5.3 Performance

5.3.1 Hash Collisions

Both of our implementations under consideration carry the risk of collision. To
evaluate the actual rate of collision, we used 16-bit labels to hash edges from
over 300,000 forests and plotted as a function of the number of edges in a forest,
〈c〉 (the average number of collisions per forest), and pf (the probability of one
or more collisions occurring in a forest). The results, in Figure 5, support our

derived upper bounds; namely: pf < 1 − (1 − 2−b)(
e

2
) < e2/2b−1.

12

0.5

0.6

0.7

0.8

0.9

1

1.1

0 0.2 0.4 0.6 0.8 1

〈R
〉

ε

Figure 4: Clustering error as a function of distance error bounds

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

100 150 200 250 300

P
ro

b
a
b
il
it
y

Edges

e2/2b+1

1 − (1 − 2−b)(
e

2
)

〈c〉
pc>0

Figure 5: Results of using 16 bits to hash the edges of over 300,000 forests. 〈c〉 is
the expected number of resulting hashing collisions as a function of the number
of edges in a forest; pc>0 is the probability that one or more hashing collisions
will occur.

13

5.3.2 Speed

Figure 6 (top) displays running time as a function of tree size for generating
pairwise distances using each algorithm presented here with the exception of
that of Section 4.1. In Figure 6 (bottom), the running time is displayed as
a function of forest size while the number of taxa is held constant. All other
parameters remain invariant.

It can be seen that, as the number of taxa grows, both Day’s algorithm
and the näıve algorithm quickly become onerous. As predicted, Section 4.2.1
performs much better, even with an error bound of just 10%. The Section 4.2
algorithm, which can be made arbitrarily probabilistically exact, outperforms
all others in these tests. For growth with respect to the number of trees, the
findings are similar, although, in this case, all curves are of course quadratic—
but the coefficients of the curve for the hashed implementation of the exact
method lead to a drastically slower growth curve.

6 Conclusion

As computational biologists everywhere increasingly turn to phylogenetic com-
putations to further their understanding of genomic, proteomic, and metabolomic
data, and do so on larger and larger datasets, a fast computational method to
compare large collections of trees will be required to support interactive analy-
ses.

We used an embedding in high-dimensional space and techniques for comput-
ing vector norms from high-dimensional geometry to design the first sublinear-
time approximation scheme to compute Robinson-Foulds distances between
pairs of trees. We implemented our algorithm and provided experimental sup-
port for its computational advantages. We also resolved an open issue from the
preliminary version of this paper [Pattengale and Moret (2006)] by presenting
an efficient procedure for embedding trees. Thus our algorithm not only outper-
forms repeated applications of Day’s algorithm for large collections of trees, it
also achieves similarly spectacular speedups for smaller collections of very large
trees. In the process, we presented a unified view of algorithms that rely on
lists of vertices and bipartitions, a view that allowed us to improve the speed of
Day’s algorithm as well.

The new implementation of our algorithm, FastRF, used to run all of our
experiments is open-source and available for download from compbio.unm.edu

7 Acknowledgments

This work is supported in part by the US National Science Foundation under
grants DEB 01-20709, EF 03-31654, and IIS 01-21377.

14

0.005

0.05

0.5

5

50

20 200 2000

T
im

e
(s

)

Taxa

create
Day’s
Naive

Hashed
Fast 10%
Fast 20%

0.005

0.05

0.5

5

50

20 200 2000

T
im

e
(s

)

Trees

create
Day’s
Naive

Hashed
Fast 10%
Fast 20%

Figure 6: Performance of various algorithms as a function of number of taxa
(top) and number of trees (bottom). Variable-length bit vectors were used for
the näıve algorithm. The other algorithms used 64-bit hashed edge labels. The
create curve shows the time used to generate the random forests. The labels
Day’s, Hashed (i.e., Section 4.2), and Näıve refer to exact distance computa-
tions, whereas Fast 10% and Fast 20% (i.e., Section 4.2.1) refer to approximate
distance computations.

15

References

[Achlioptas (2003)] Achlioptas, D., 2003. Database-friendly random projec-
tions: Johnson-Lindenstrauss with binary coins. J. Comput. Syst. Sci. 66,
671–687.

[Allen and Steel (2001)] Allen, B., Steel, M., 2001. Subtree transfer operations
and their induced metrics on evolutionary trees. Annals of Combinatorics
5 (1), 1–15.

[Amenta et al. (2003)] Amenta, N., Clarke, F., John, K. S., 2003. A linear-time
majority tree algorithm. In: Proc. 3rd Workshop Algs. in Bioinformatics
(WABI’03). Vol. 2812 of Lecture Notes in Computer Science. Springer-
Verlag, pp. 216–226.

[Bininda-Edmonds (2004)] Bininda-Edmonds, O. (Ed.), 2004. Phylogenetic Su-
pertrees: Combining information to reveal the Tree of Life. Kluwer Aca-
demic Publishers.

[Bryant (2002)] Bryant, D., 2002. A classification of consensus methods for phy-
logenetics. In: Bioconsensus. Vol. 61 of DIMACS Series in Discrete Math.
and Theor. Computer Science. American Math. Soc. Press, pp. 163–184.

[Bryant (2004)] Bryant, D., 2004. The splits in the neighborhood of a tree.
Annals of Combinatorics 8 (1), 1–11.

[DasGupta et al. (2000)] DasGupta, B., He, X., Jiang, T., Li, M., Tromp, J.,
Zhang, L., 2000. On computing the nearest neighbor interchange distance.
In: Proc. DIMACS Workshop on Discrete Problems with Medical Applica-
tions. Vol. 55 of DIMACS Series in Discrete Math. and Theor. Computer
Science. American Math. Soc. Press, pp. 125–143.

[Day (1985)] Day, W., 1985. Optimal algorithms for comparing trees with la-
beled leaves. J. Classif. 2 (1), 7–28.

[Indyk (2001)] Indyk, P., 2001. Algorithmic applications of low-distortion geo-
metric embeddings. In: Proc. 42nd IEEE Symp. Foundations of Comput.
Sci. (FOCS’01). IEEE Computer Society, pp. 10–33.

[Indyk and Motwani (1998)] Indyk, P., Motwani, R., 1998. Approximate near-
est neighbors: Towards removing the curse of dimensionality. In: Proc. 30th
ACM Symp. Theory of Comput. (STOC’98). ACM Press, pp. 604–613.

[Johnson and Lindenstrauss (1984)] Johnson, W., Lindenstrauss, J., 1984. Ex-
tensions of Lipschitz mappings into a Hilbert space. Cont. Math. 26, 189–
206.

[Linial et al. (1995)] Linial, N., London, E., Rabinovich, Y., 1995. The geome-
try of graphs and some of its algorithmic applications. Combinatorica 15,
215–245.

[Maddison (1991)] Maddison, D., 1991. The discovery and importance of mul-
tiple islands of most-parsimonious trees. Syst. Zoology 40, 315–328.

16

[Pattengale and Moret (2006)] Pattengale, N., Moret, B., 2006. A sublinear-
time randomized approximation scheme for the Robinson-Foulds metric.
In: Proc. 10th Conf. on Research in Comput. Mol. Biol. (RECOMB’06).
Vol. 3909 of Lecture Notes in Computer Science. Springer-Verlag, pp. 221–
230.

[Rand (1971)] Rand, W., 1971. Objective criteria for the evaluation of clustering
methods. J. American Stat. Assoc. 66, 846–850.

[Robinson and Foulds (1981)] Robinson, D., Foulds, L., 1981. Comparison of
phylogenetic trees. Math. Biosciences 53, 131–147.

17

