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 18.1 Semantic Networks and Inheritance in Lisp 

 This chapter introduces the implementation of semantic networks and 
inheritance, and a full object-oriented programming system in Lisp. As a 
family of representations, semantic networks provide a basis for a large 
variety of inferences, and are widely used in natural language processing 
and cognitive modeling. We do not discuss all of these, but focus on a 
basic approach to constructing network representations using property lists. 
After these are discussed and used to define a simple semantic network, we 
define a function for class inheritance. Finally, since semantic networks and 
inheritance are important precursors of object-oriented design, we present 
CLOS, the Common Lisp Object System, Section 18.2, and an example 
implementation in 18.3. 

A Simple 
Semantic 
Network 

Lisp is a convenient language for representing any graph structure, 
including semantic nets. Lists provide the ability to create objects of 
arbitrary complexity and these objects may be bound to names, allowing 
for easy reference and the definition of relationships between them. 
Indeed, all Lisp data structures are based on an internal implementation as 
chains of pointers, a natural isomorph to graph structures. 

For example, labeled graphs may be represented using association lists: each 
node is an entry in an association list with all the arcs out of that node stored 
in the datum of the node as a second association list. Arcs are described by an 
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association list entry that has the arc name as its key and that has the arc 
destination as its datum. Using this representation, the built-in association list 
functions are used to find the destination of a particular arc from a given node. 
For example, the labeled, directed graph of Figure 18.1 is represented by the 
association list: 

((a (1 . b)) 

  (b (2 . c)) 

  (c (2 . b) (3 . a))) 
 

 

 

 

 

 

 

 

 

Figure 18.1 A simple labeled directed graph 

This approach is the basis of many network implementations. Another way to 
implement semantic networks is through the use of property lists. 

Essentially, property lists are a built-in feature of Lisp that allows named 
relationships to be attached to symbols. Rather than using setq to bind an 
association list to a symbol, with property lists we can program the direct 
attachment of named attributes to objects in the global environment. These 
are bound to the symbol not as a value but as an additional component called 
the property list. 

Functions for managing property lists are get, setf, remprop, and 
symbol-plist. get, which has the syntax: 

(get <symbol> <property-name>) 

may be used to retrieve a property from <symbol> by its <property-
name>. For example, if the symbol rose has a color property of red and 
a smell property of sweet, then get would have the behavior: 

(get ‘rose ‘color) 

red 

(get ‘rose ‘smell) 

sweet 

(get ‘rose ‘party-affiliation) 

nil 

As the last of these calls to get illustrates, if an attempt is made to retrieve a 
nonexistent property, one that is not on the property list, get returns a value 
of nil. 
Properties are attached to objects using the setf function, which has the 
syntax: 

(setf <form> <value>) 
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setf is a generalization of setq. The first argument to setf is taken from 
a large but specific list of forms. setf does not use the value of the form 
but the location where the value is stored. The list of forms includes car 
and cdr. setf places the value of its second argument in that location. For 
example, we may use setf along with the list functions to modify lists in the 
global environment, as the following transcript shows: 

? (setq x ‘(a b c d e)) 

(a b c d e) 

? (setf (nth 2 x) 3) 

3 

? x 

(a b 3 d e) 

We use setf, along with get, to change the value of properties. For 
instance, we may define the properties of a rose by: 

> (setf (get ‘rose ‘color) ‘red) 

red 

> (setf (get ‘rose ‘smell) ‘sweet) 

sweet 

remprop takes as arguments a symbol and a property name and causes a 
named property to be deleted. For example: 

> (get ‘rose ‘color) 

red 

> (remprop ‘rose ‘color) 

color 

> (get ‘rose ‘color) 

nil 

symbol-plist takes as argument a symbol and returns its property list. 
For example: 

> (setf (get ‘rose ‘color) ‘red) 

red 

> (setf (get ‘rose ‘smell) ‘sweet) 

sweet 

> (symbol-plist ‘rose) 

(smell sweet color red) 

Using property lists, it is straightforward to implement a semantic network. 
For example, the following calls to setf implement the semantic network 
description of species of birds from Figure 2.1. The isa relations define 
inheritance links. 

(setf (get ‘animal ‘covering) ‘skin) 

(setf (get ‘bird ‘covering) ‘feathers) 

(setf (get ‘bird ‘travel) ‘flies) 

(setf (get ‘bird ‘isa) animal) 
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(setf (get ‘fish ‘isa) animal) 

(setf (get ‘fish ‘travel) ‘swim) 

(setf (get ‘ostrich ‘isa) ‘bird) 

(setf (get ‘ostrich ‘travel) ‘walk) 

(setf (get ‘penguin ‘isa) ‘bird) 

(setf (get ‘penguin ‘travel) ‘walk) 

(setf (get ‘penguin ‘color) ‘brown) 

(setf (get ‘opus ‘isa) ‘penguin) 

(setf (get ‘canary ‘isa) ‘bird) 

(setf (get ‘canary ‘color) ‘yellow) 

(setf (get ‘canary ‘sound) ‘sing) 

(setf (get ‘tweety ‘isa) ‘canary) 

(setf (get ‘tweety ‘color) ‘white) 

(setf (get ‘robin ‘isa) ‘bird) 

(setf (get ‘robin ‘sound) ‘sings) 

(setf (get ‘robin ‘color) ‘red) 

Using this representation of semantic nets, we now define control functions 
for hierarchical inheritance. This is simply a search along isa links until a 
parent is found with the desired property. The parents are searched in a depth-
first fashion, and search stops when an instance of the property is found. This 
is typical of the inheritance algorithms provided by many commercial systems. 
Variations on this approach include the use of breadth-first search as an 
inheritance search strategy. 

inherit-get is a variation of get that first tries to retrieve a property 
from a symbol; if this fails, inherit-get calls get-from-parents 
to implement the search. get-from-parents takes as its first 
argument either a single parent or a list of parents; the second argument is 
a property name. If the parameter parents is nil, the search halts with 
failure. If parents is an atom, it calls inherit-get on the parent to 
either retrieve the property from the parent itself or continue the search. If 
parents is a list, get-from-parents calls itself recursively on the 
car and cdr of the list of parents. The tree walk based function 
inherit-get is defined by: 

(defun inherit-get (object property) 

  (or (get object property) 

    (get-from-parents (get object ‘isa)  

        property))) 

(defun get-from-parents (parents property) 

  (cond ((null parents) nil) 

    ((atom parents)  

          (inherit-get parents property)) 

    (t (or (get-from-parents (car parents)   
            property) 

         (get-from-parents (cdr parents)  

             property))))) 
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In the next section we generalize our representations for things, classes, 
and inheritance using the CLOS object-oriented programming library. 

              18.2   Object-Oriented Programming Using CLOS 

Object-
Orientation 

Defined 

In spite of the many advantages of functional programming, some 
problems are best conceptualized in terms of objects that have a state that 
changes over time. Simulation programs are typical of this. Imagine trying 
to build a program that will predict the ability of a steam heating system to 
heat a large building: we can simplify the problem by thinking of it as a 
system of objects (rooms, thermostats, boilers, steam pipes, etc.) that 
interact to change the temperature and behavior of each other over time. 
Object-oriented languages support an approach to problem solving that 
lets us decompose a problem into interacting objects. These objects have a 
state that can change over time, and a set of functions or methods that 
define the object’s behaviors. Essentially, object-oriented programming lets 
us solve problems by constructing a model of the problem domain as we 
understand it. This model-based approach to problem solving is a natural 
fit for artificial intelligence, an effective programming methodology in its 
own right, and a powerful tool for thinking about complex problem 
domains. 

There are a number of languages that support object-oriented 
programming. Some of the most important are Smalltalk, C++, Java and 
the Common Lisp Object System (CLOS). At first glance, Lisp, with its 
roots in functional programming, and object orientation, with its emphasis 
on creating objects that retain their state over time, may seem worlds apart. 
However, many features of the language, such as dynamic type checking 
and the ability to create and destroy objects dynamically, make it an ideal 
foundation for constructing an object-oriented language. Indeed, Lisp was 
the basis for many of the early object-oriented languages, such as Smalltalk, 
Flavors, KEE, and ART. As the Common Lisp standard was developed, 
the Lisp community has accepted CLOS as the preferred way to do object-
oriented programming in Lisp. 

In order to fully support the needs of object-oriented programming, a 
programming language must provide three capabilities: 1) encapsulation, 2) 
polymorphism, and 3) inheritance. The remainder of this introduction describes 
these capabilities and an introduction to the way in which CLOS supports 
them. 

Encapsulation. All modern programming languages allow us to 
create complex data structures that combine atomic data items into a 
single entity. Object-oriented encapsulation is unique in that it 
combines both data items and the procedures used for their 
manipulation into a single structure, called a class. For example, the 
abstract data types seen previously (e.g., Section 16.2) may quite 
properly be seen as classes. In some object-oriented languages, such 
as Smalltalk, the encapsulation of procedures (or methods as they 
are called in the object-oriented community) in the object definition 
is explicit. CLOS takes a different approach, using Lisp’s type-
checking to provide this same ability. CLOS implements methods as 
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generic functions. These functions check the type of their parameters to 
guarantee that they can only be applied to instances of a certain 
class. This gives us a logical binding of methods to their objects. 

Polymorphism. The word polymorphic comes from the roots 
“poly”, meaning many, and “morphos”, meaning form. A function is 
polymorphic if it has many different behaviors, depending on the 
types of its arguments. Perhaps the most intuitive example of 
polymorphic functions and their importance is a simple drawing 
program. Assume that we define objects for each of the shapes 
(square, circle, line) that we would like to draw. A natural way to 
implement this is to define a method named draw for each object 
class. Although each individual method has a different definition, 
depending on the shape it is to draw, all of them have the same 
name. Every shape in our system has a draw behavior. This is much 
simpler and more natural than to define a differently named 
function (draw-square, draw-circle, etc.) for every shape. CLOS 
supports polymorphism through generic functions. A generic 
function is one whose behavior is determined by the types of its 
arguments. In our drawing example, CLOS enables us to define a 
generic function, draw, that includes code for drawing each of the 
shapes defined in the program. On evaluation, it checks the type of 
its argument and automatically executes the appropriate code. 

Inheritance. Inheritance is a mechanism for supporting class 
abstraction in a programming language. It lets us define general 
classes that specify the structure and behavior of their 
specializations, just as the class “tree” defines the essential attributes 
of pine trees, poplars, oaks, and other different species. In Section 
18.1, we built an inheritance algorithm for semantic networks; this 
demonstrated the ease of implementing inheritance using Lisp’s 
built-in data structuring techniques. CLOS provides us with a more 
robust, expressive, built-in inheritance algorithm. 

Defining 
Classes and 

Instances in 
CLOS 

The basic data structure in CLOS is the class. A class is a 
specification for a set of object instances. We define classes using the 
defclass macro. defclass has the syntax: 

(defclass <class-name> (<superclass-name>*) 

    (<slot-specifier>*)) 

<class-name> is a symbol. Following the class name is a list of direct 
superclasses (called superclass); these are the class’s immediate 
parents in the inheritance hierarchy. This list may be empty. Following the 
list of parent classes is a list of zero or more slot-specifiers. A 
slot-specifier is either the name of a slot or a list consisting of a 
slot-name and zero or more slot-options: 

slot-specifier ::= slotname |  

(slot-name [slot-option]) 

For instance, we may define a new class, rectangle, which has slots 
values for length and width: 
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> (defclass rectangle() 

    (length width)) 

#<standard-class rectangle> 

make-instance allows us to create instances of a class, taking as its 
argument a class name and returning an instance of that class. It is the 
instances of a class that actually store data values. We may bind a symbol, 
rect, to an instance of rectangle using make-instance and 
setq: 

> (setq rect (make-instance ‘rectangle)) 

#<rectangle #x286AC1> 

The slot options in a defclass define optional properties of slots. Slot 
options have the syntax (where “|” indicates alternative options): 

slot-option ::= :reader <reader-function-name>| 

       :writer <writer-function-name>| 

       :accessor <reader-function-name>| 

       :allocation <allocation-type>| 

       :initarg <initarg-name>| 

       :initform <form> 

We declare slot options using keyword arguments. Keyword arguments are 
a form of optional parameter in a Lisp function. The keyword, which 
always begins with a “:”, precedes the value for that argument. Available 
slot options include those that provide accessors to a slot. The 
:reader option defines a function called reader-function-name 
that returns the value of a slot for an instance. The :writer option 
defines a function named writer-function-name that will write to 
the slot. :accessor defines a function that may read a slot value or may 
be used with setf to change its value.  

In the following transcript, we define rectangle to have slots for 
length and width, with slot accessors get-length and get-
width, respectively. After binding rect to an instance of rectangle 
using make-instance, we use the accessor, get-length, with 
setf to bind the length slot to a value of 10. Finally, we use the 
accessor to read this value. 

> (defclass rectangle () 

 ((length :accessor get-length) 

 (width :accessor get-width))) 

#<standard-class rectangle> 

> (setq rect (make-instance ‘rectangle)) 

#<rectangle #x289159> 

> (setf (get-length rect) 10) 

10 

> (get-length rect) 

10 
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In addition to defining accessors, we can access a slot using the 
primitive function slot-value. slot-value is defined for all slots; 
it takes as arguments an instance and a slot name and returns the value of 
that slot. We can use it with setf to change the slot value. For example, 
we could use slot-value to access the width slot of rect: 

> (setf (slot-value rect ‘width) 5) 

5 

> (slot-value rect ‘width) 

5 

:allocation lets us specify the memory allocation for a slot. 
allocation-type may be either :instance or :class. If 
allocation type is :instance, then CLOS allocates a local slot for each 
instance of the type. If allocation type is :class, then all instances share 
a single location for this slot. In :class allocation, all instances will share 
the same value of the slot; changes made to the slot by any instance will 
affect all other instances. If we omit the :allocation specifier, 
allocation defaults to :instance. 
:initarg allows us to specify an argument that we can use with make-
instance to specify an initial value for a slot. For example, we can 
modify our definition of rectangle to allow us to initialize the 
length and width slots of instances: 

> (defclass rectangle () 

  ((length :accessor get-length  

       :initarg init-length) 

  (width :accessor get-width :initarg init-width))) 

#<standard-class rectangle> 

>(setq rect (make-instance ‘rectangle  

    ‘init-length 100 ‘init-width 50)) 

#<rectangle #x28D081> 

> (get-length rect) 

100 

> (get-width rect) 

50 

:initform lets us specify a form that CLOS evaluates on each call to 
make-instance to compute an initial value of the slot. For example, if 
we would like our program to ask the user for the values of each new 
instance of rectangle, we may define a function to do so and include it in 
an initform: 

> (defun read-value (query) (print query)(read)) 

read-value 

> (defclass rectangle () 

     ((length :accessor get-length  

              :initform (read-value “enter length”)) 
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   (width :accessor get-width  

            :initform (read-value “enter width”)))) 

#<standard-class rectangle> 

> (setq rect (make-instance ‘rectangle)) 

“enter length” 100 

“enter width” 50 

#<rectangle #x290461> 

> (get-length rect) 

100 

> (get-width rect) 

50 

Defining 
Generic 

Functions and 
Methods 

A generic function is a function whose behavior depends upon the type of 
its arguments. In CLOS, generic functions contain a set of methods, indexed 
by the type of their arguments. We call generic functions with a syntax 
similar to that of regular functions; the generic function retrieves and 
executes the method associated with the type of its parameters.  

CLOS uses the structure of the class hierarchy in selecting a method in a 
generic function; if there is no method defined directly for an argument of 
a given class, it uses the method associated with the “closest” ancestor in 
the hierarchy. Generic functions provide most of the advantages of 
“purer” approaches of methods and message passing, including inheritance 
and overloading. However, they are much closer in spirit to the functional 
programming paradigm that forms the basis of Lisp. For instance, we can 
use generic functions with mapcar, funcall, and other higher-order 
constructs in the Lisp language. 

We define generic functions using either defgeneric or defmethod. 
defgeneric lets us define a generic function and several methods using 
one form. defmethod enables us to define each method separately, 
although CLOS combines all of them into a single generic function. 
defgeneric has the (simplified) syntax: 

(defgeneric f-name lambda-list <method-description>*) 

<method-description> ::= (:method specialized-lambda-                   
     list form) 

defgeneric takes a name of the function, a lambda list of its 
arguments, and a series of zero or more method descriptions. In a method 
description, specialized-lambda-list is just like an ordinary 
lambda list in a function definition, except that a formal parameter may 
be replaced with a (symbol parameter-specializer) pair: symbol is the name 
of the parameter, and parameter-specializer is the class of the argument. If 
an argument in a method has no parameter specializer, its type defaults to 
t, which is the most general class in a CLOS hierarchy. Parameters of type 
t can bind to any object. The specialized lambda list of each method 
specifier must have the same number of arguments as the lambda list in 
the defgeneric. A defgeneric creates a generic function with the 
specified methods, replacing any existing generic functions. 
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As an example of a generic function, we may define classes for 
rectangle and circle and implement the appropriate methods for 
finding areas: 

(defclass rectangle () 

  ((length :accessor get-length  
      :initarg init-length) 

  (width :accessor get-width :initarg init-width))) 

(defclass circle () 

  ((radius :accessor get-radius  
      :initarg init-radius))) 
(defgeneric area (shape) 

  (:method ((shape rectangle)) 

    (* (get-length shape) 

      (get-width shape))) 

  (:method ((shape circle)) 

  (* (get-radius shape) (get-radius shape) pi))) 

(setq rect (make-instance ‘rectangle ‘init-length 10  

    ‘init-width 5)) 

(setq circ (make-instance ‘circle ‘init-radius 7)) 

We can use the area function to compute the area of either shape: 

> (area rect) 

50 

> (area circ) 

153.93804002589985 

We can also define methods using defmethod. Syntactically, 
defmethod is similar to defun, except it uses a specialized lambda 
list to declare the class to which its arguments belong. When we define a 
method using defmethod, if there is no generic function with that name, 
defmethod creates one; if a generic function of that name already exists, 
defmethod adds a new method to it. For example, suppose we wish to 
add the class square to the above definitions, we can do this with: 

(defclass square () 

    ((side :accessor get-side :initarg init-side))) 

(defmethod area ((shape square)) 

    (* (get-side shape) 

     (get-side shape))) 

(setq sqr (make-instance ‘square ‘init-side 6)) 

defmethod does not change the previous definitions of the area 
function; it simply adds a new method to the generic function: 

> (area sqr) 

36 
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> (area rect) 

50 

> (area circ) 

153.93804002589985 

Inheritance in 
CLOS 

CLOS is a multiple-inheritance language. Along with offering the program 
designer a very flexible representational scheme, multiple inheritance 
introduces the potential for creating anomalies when inheriting slots and 
methods. If two or more ancestors have defined the same method, it is 
crucial to know which method any instance of those ancestors will inherit. 
CLOS resolves potential ambiguities by defining a class precedence list, which 
is a total ordering of all classes within a class hierarchy.  

Each defclass lists the direct parents of a class in left-to-right order. 
Using the order of direct parents for each class, CLOS computes a partial 
ordering of all the ancestors in the inheritance hierarchy. From this partial 
ordering, it derives the total ordering of the class precedence list through a 
topological sort. The precedence list follows two rules: 

1. Any direct parent class precedes any more distant ancestor. 

2. In the list of immediate parents of defclass, each class 
precedes those to its right. 

CLOS computes the class precedence list for an object by topologically 
sorting its ancestor classes according to the following algorithm. Let C be 
the class for which we are defining the precedence list: 

1. Let Sc be the set of C and all its superclasses. 

2. For each class, c, in Sc, define the set of ordered pairs: 

Rc = {(c, c1), (c1, c2), … (cn-1, cn)} 

where c1 through cn are the direct parents of c in the order 
they are listed in defclass.  Note that each Rc defines a total 
order. 

3. Let R be the union of the Rcs for all elements of Sc. R may or 
may not define a partial ordering. If it does not define a partial 
ordering, then the hierarchy is inconsistent and the algorithm 
will detect this. 

4. Topologically sort the elements of R by: 

a. Begin with an empty precedence list, P. 
b. Find a class in R having no predecessors. Add it to the 

end of P and remove the class from Sc and all pairs 
containing it from R. If there are several classes in Sc 
with no predecessor, select the one that has a direct 
subclass nearest the end in the current version of P. 

c. Repeat the two previous steps until no element can be 
found that has no predecessor in R. 
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d. If Sc is not empty, then the hierarchy is inconsistent; it 
may contain ambiguities that cannot be resolved using 
this technique. 

Because the resulting precedence list is a total ordering, it resolves any 
ambiguous orderings that may have existed in the class hierarchy. CLOS 
uses the class precedence list in the inheritance of slots and the selection of 
methods. 

In selecting a method to apply to a given call of a generic function, CLOS 
first selects all applicable methods. A method is applicable to a generic 
function call if each parameter specializer in the method is consistent with 
the corresponding argument in the generic function call. A parameter 
specializer is consistent with an argument if the specializer either matches 
the class of the argument or the class of one of its ancestors. 

CLOS then sorts all applicable methods using the precedence lists of the 
arguments. CLOS determines which of two methods should come first in 
this ordering by comparing their parameter specializers in a left-to-right 
fashion. If the first pair of corresponding parameter specializers are equal, 
CLOS compares the second, continuing in this fashion until it finds 
corresponding parameter specializers that are different. Of these two, it 
designates as more specific the method whose parameter specializer 
appears leftmost in the precedence list of the corresponding argument. 
After ordering all applicable methods, the default method selection applies 
the most specific method to the arguments. For more details, see Steele 
(1990). 

              18.3   CLOS Example: A Thermostat Simulation 

 The properties of object-oriented programming that make it a natural way 
to organize large and complex software implementations are equally 
applicable in the design of knowledge bases. In addition to the benefits of 
class inheritance for representing taxonomic knowledge, the message-
passing aspect of object-oriented systems simplifies the representation of 
interacting components. 

As a simple example, consider the task of modeling the behavior of a steam 
heater for a small office building. We may naturally view this problem in 
terms of interacting components. For example: 

• Each office has a thermostat that turns the heat in that office 
on and off; this functions independently of the thermostats in 
other offices. 

• The boiler for the heating plant turns itself on and off in 
response to the heat demands made by the offices. 

• When the demand on the boiler increases, there may be a time 
lag while more steam is generated. 

• Different offices place different demands on the system; for 
example, corner offices with large windows lose heat faster than 
inner offices. Inner offices may even gain heat from their 
neighbors. 
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• The amount of steam that the system may route to a single 
office is affected by the total demand on the system. 

These points are only a few of those that must be taken into account in 
modeling the behavior of such a system; the possible interactions are 
extremely complex. An object-oriented representation allows the 
programmer to focus on describing one class of objects at a time. We 
would represent thermostats, for example, by the temperature at which 
they call for heat, along with the speed with which they respond to changes 
in temperature. 
The steam plant could be characterized in terms of the maximum amount of 
heat it can produce, the amount of fuel used as a function of heat produced, 
the amount of time it takes to respond to increased heat demand, and the rate 
at which it consumes water. 

A room could be described in terms of its volume, the heat loss through its 
walls and windows, the heat gain from neighboring rooms, and the rate at 
which the radiator adds heat to the room. 

The knowledge base is built up of classes such as room and thermostat, 
which define the properties of the class, and instances such as room-322 
and thermostat-211, which model individual situations. 

The interactions between components are described by messages between 
instances. For example, a change in room temperature would cause a message 
to be sent to an instance of the class thermostat. If this new 
temperature is low enough, the thermostat would switch after an 
appropriate delay. This would cause a message to be sent to the heater 
requesting more heat. This would cause the heater to consume more oil, or, 
if already operating at maximum capacity, to route some heat away from other 
rooms to respond to the new demand. This would cause other 
thermostats to turn on, and so forth. 

Using this simulation, we can test the ability of the system to respond to 
external changes in temperature, measure the effect of heat loss, or determine 
whether the projected heating is adequate. We could use this simulation in a 
diagnostic program to verify that a hypothesized fault could indeed produce a 
particular set of symptoms. For example, if we have reason to believe that a 
heating problem is caused by a blocked steam pipe, we could introduce such a 
fault into the simulation and see whether it produces the observed symptoms. 

The significant thing about this example is the way in which an object-oriented 
approach allows knowledge engineers to deal with the complexity of the 
simulation. It enables them to build the model a piece at a time, focusing only 
on the behaviors of simple classes of objects. The full complexity of the 
system behavior emerges when we execute the model. 

The basis of our CLOS implementation of this model is a set of object 
definitions. Thermostats have a single slot called setting. The 
setting of each instance is initialized to 65 using initform. heater-
thermostat is a subclass of thermostat for controlling heaters (as 
opposed to air conditioners); they have a single slot that will be bound to an 
instance of the heater class. Note that the heater slot has a class 
allocation; this captures the constraint that the thermostats in different 
rooms of a building control the single building’s heater-obj. 
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(defclass thermostat () 

    ((setting :initform 65 

  :accessor therm-setting))) 

(defclass heater-thermostat (thermostat) 

    ((heater :allocation :class 

  :initarg heater-obj))) 

A heater has a state (on or off) that is initialized to off, and a 
location. It also has a slot, rooms-heated, that will be bound to a list 
of objects of type room. Note that instances, like any other structure in Lisp, 
may be elements of a list. 

(defclass heater () 

    ((state :initform ‘off 

  :accessor heater-state) 

    (location :initarg loc) 

    (rooms-heated))) 

room has slots for temperature, initialized to 65 degrees; 
thermostat, which will be bound to an instance of thermostat; and 
name, the name of room. 

(defclass room () 

    ((temperature :initform 65 

     :accessor room-temp) 

    (thermostat :initarg therm 

     :accessor room-thermostat) 

    (name :initarg name 

     :accessor room-name))) 

These class definitions define the hierarchy of Figure 18.2. 

 

 

 

 

 

 

 

 

 

 

 

Figure 18.2. A class hierarchy for the room/heater/thermostat simulation. 
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We represent our particular simulation as a set of instances of these classes. 
We will implement a simple system of one room, one heater, and one 
thermostat: 

(setf office-heater (make-instance ‘heater ‘loc 
‘office))   

(setf room-325 (make-instance ‘room 

 ‘therm (make-instance ‘heater-thermostat 

  ‘heater-obj office-heater) 

 ‘name ‘room-325)) 

(setf (slot-value office-heater ‘rooms-heated) (list 
room-325)) 

Figure 18.3 shows the definition of instances, the allocation of slots, and 
the bindings of slots to values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18.3. The creation of instances and binding of slots in the 
simulation. 

We define the behavior of rooms through the methods change-temp, 
check-temp, and change-setting. change-temp sets the 
temperature of a room to a new value, prints a message to the user, 
and calls check-temp to determine whether the heater should come 
on. Similarly, change-setting changes the thermostat setting, 
therm-setting, and calls check-temp, which simulates the 
thermostat. If the temperature of the room is less than the 
thermostat setting, it sends the heater a message to turn on; otherwise it 
sends an off message. 
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(defmethod change-temp ((place room) temp-change) 

 (let ((new-temp (+ (room-temp place)  

        temp-change))) 

     (setf (room-temp place) new-temp) 

     (terpri) 

     (prin1 “the temperature in”) 

     (prin1 (room-name place)) 

     (prin1 “ is now “) 

     (prin1 new-temp) 

     (terpri) 

     (check-temp place))) 

(defmethod change-setting ((room room) new-setting) 

    (let ((therm (room-thermostat room))) 

     (setf (therm-setting therm) new-setting) 

     (prin1 “changing setting of thermostat in”) 

     (prin1 (room-name room)) 

     (prin1 “ to “) 

     (prin1 new-setting) 

     (terpri) 

     (check-temp room))) 

(defmethod check-temp ((room room)) 

    (let* ((therm (room-thermostat room)) 

        (heater (slot-value therm ‘heater))) 

      (cond ((> (therm-setting therm)  

        (room-temp room)) 

             (send-heater heater ‘on)) 

          (t (send-heater heater ‘off))))) 

The heater methods control the state of the heater and change the temperature 
of the rooms. send-heater takes as arguments an instance of heater 
and a message, new-state. If new-state is on it calls the turn-on 
method to start the heater; if new-state is off it shuts the heater 
down. After turning the heater on, send-heater calls heat-rooms to 
increase the temperature of each room by one degree. 

(defmethod send-heater ((heater heater) new-state) 

    (case new-state 

     (on (if (equal (heater-state heater) ‘off) 

       (turn-on heater)) 

       (heat-rooms (slot-value heater  

           ‘rooms-heated) 1)) 
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     (off (if (equal (heater-state heater) ‘on) 

       (turn-off heater))))) 

(defmethod turn-on ((heater heater)) 

    (setf (heater-state heater) ‘on) 

    (prin1 “turning on heater in”) 

    (prin1 (slot-value heater ‘location)) 

    (terpri)) 

(defmethod turn-off ((heater heater)) 

    (setf (heater-state heater) ‘off) 

    (prin1 “turning off heater in”) 

    (prin1 (slot-value heater ‘location)) 

    (terpri)) 

(defun heat-rooms (rooms amount) 

  (cond ((null rooms) nil) 

      (t (change-temp (car rooms) amount) 

       (heat-rooms (cdr rooms) amount)))) 

The following transcript illustrates the behavior of the simulation. 

> (change-temp room-325 5) 

“the temperature in “room-325” is now “60 

“turning on heater in “office 

“the temperature in “room-325” is now “61 

“the temperature in “room-325” is now “62 

“the temperature in “room-325” is now “63 

“the temperature in “room-325” is now “64 

“the temperature in “room-325” is now “65 

“turning off heater in “office 

nil 

> (change-setting room-325 70) 

“changing setting of thermostat in “room-325” to “70 

“turning on heater in “office 

“the temperature in “room-325” is now “66 

“the temperature in “room-325” is now “67 

“the temperature in “room-325” is now “68 

“the temperature in “room-325” is now “69 

“the temperature in “room-325” is now “70 

“turning off heater in “office 

nil 
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                         Exercises 

 1. Create two semantic network representations (Section 17.1) for an 
application of your choice.  Build the representation first using association 
lists and then build it using property lists. Comment on the differences in 
these two approaches for representing semantic information. 

2. Add to the CLOS simulation of Section 18.3 a cooling system so that if 
any room’s temperature gets above a certain temperature it starts to cool. 
Also add a “thermal” factor to each room so that it heats and cools as a 
function of its volume and insulation value. 

3. Create a CLOS simulation in another domain, e.g., a building that has 
both heating and cooling. You can add specifics to each room such as an 
insulation value that mitigates heat/cooling loss. See the discussion at the 
beginning of Section 18.3 for parameters you might build in to your 
augmented system. 

4. Create a CLOS simulation for an ecological situation. For example, you 
might have classes for grass, wolves, cattle, and weather. Then make a set 
of rules that balances their ecological survival across time. 

 


